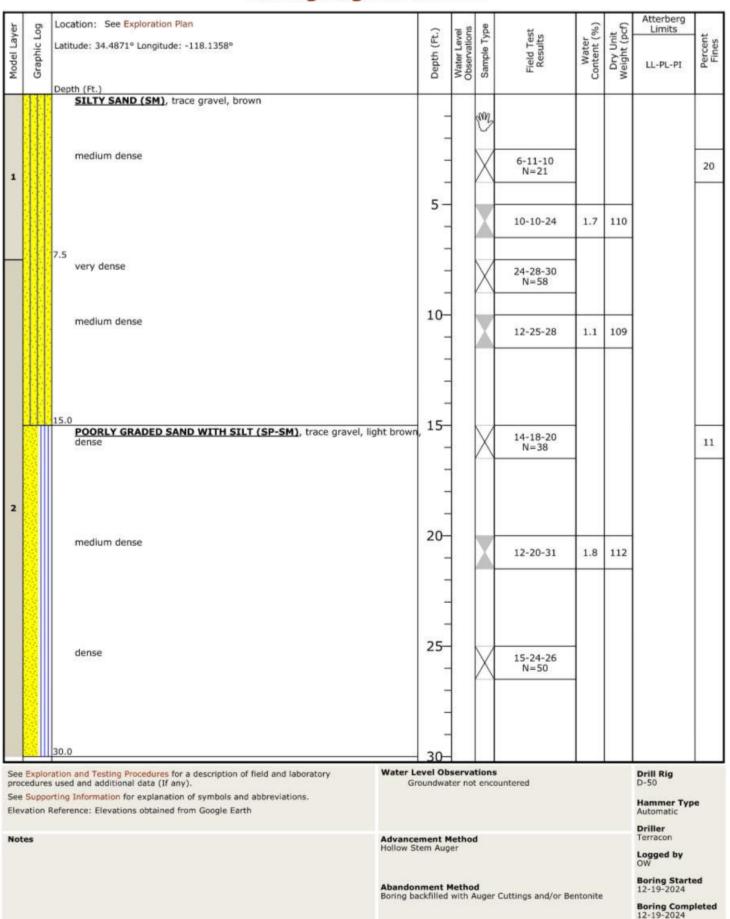
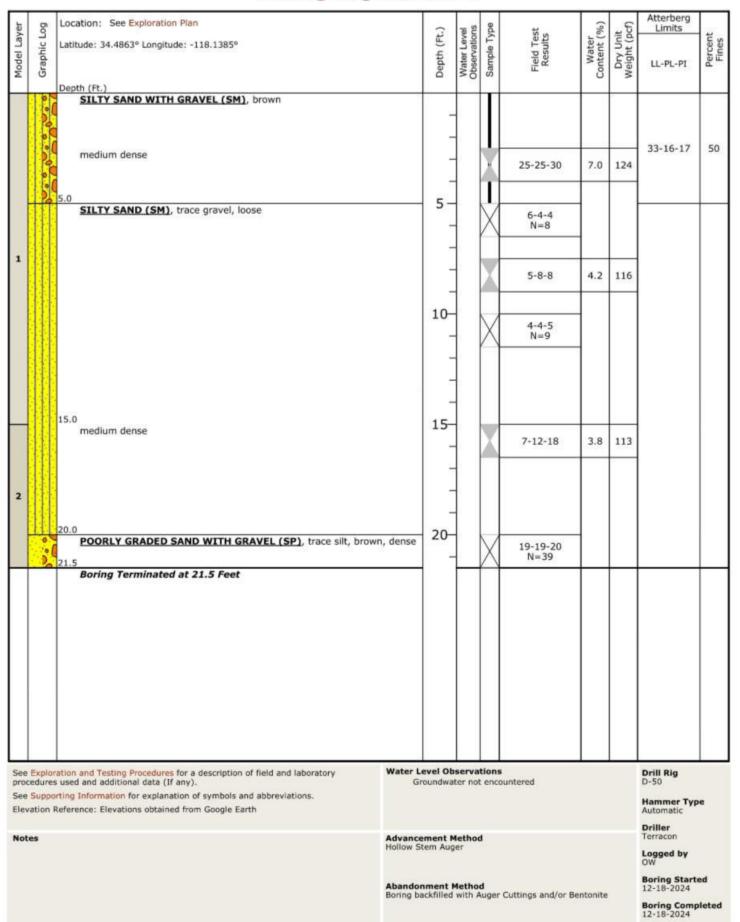

DOCKETED	
Docket Number:	25-OPT-02
Project Title:	Prairie Song Reliability Project
TN #:	264383
Document Title:	App 3-15A Water Quality Management Plan Part 2
Description:	N/A
Filer:	Erin Phillips
Organization:	Dudek
Submitter Role:	Applicant Consultant
Submission Date:	6/20/2025 1:49:08 PM
Docketed Date:	6/20/2025

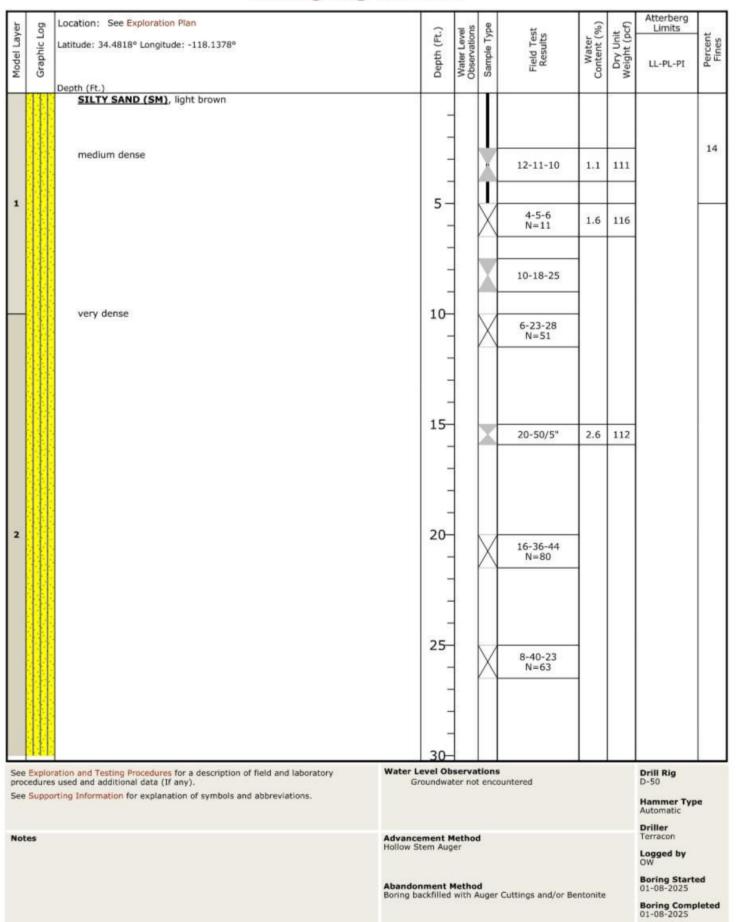
Appendix 3.15A

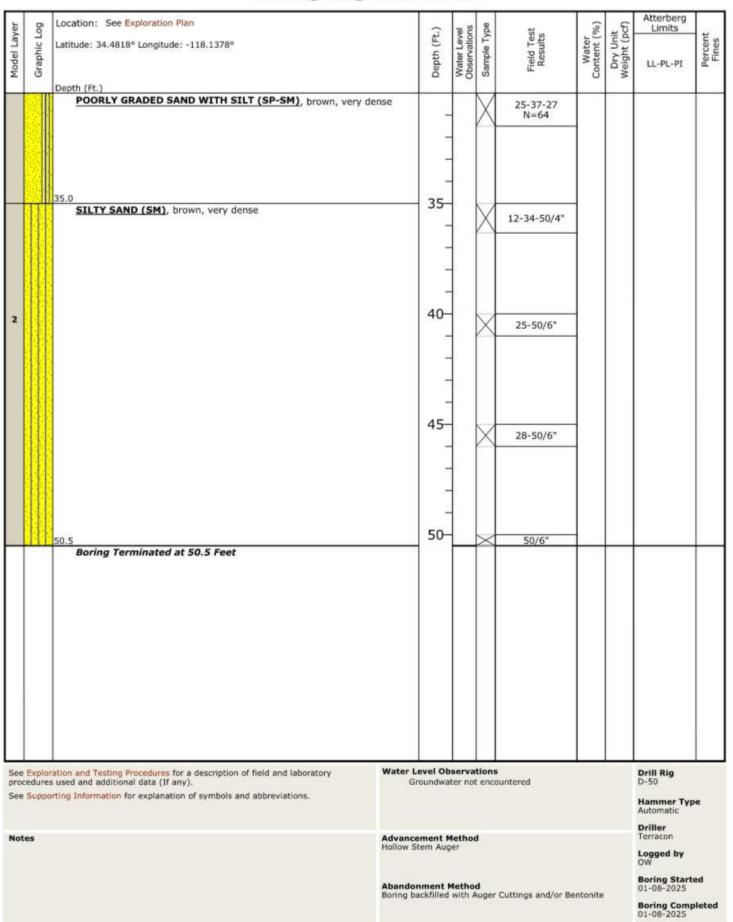

Water Quality Management Plan 2 of 6



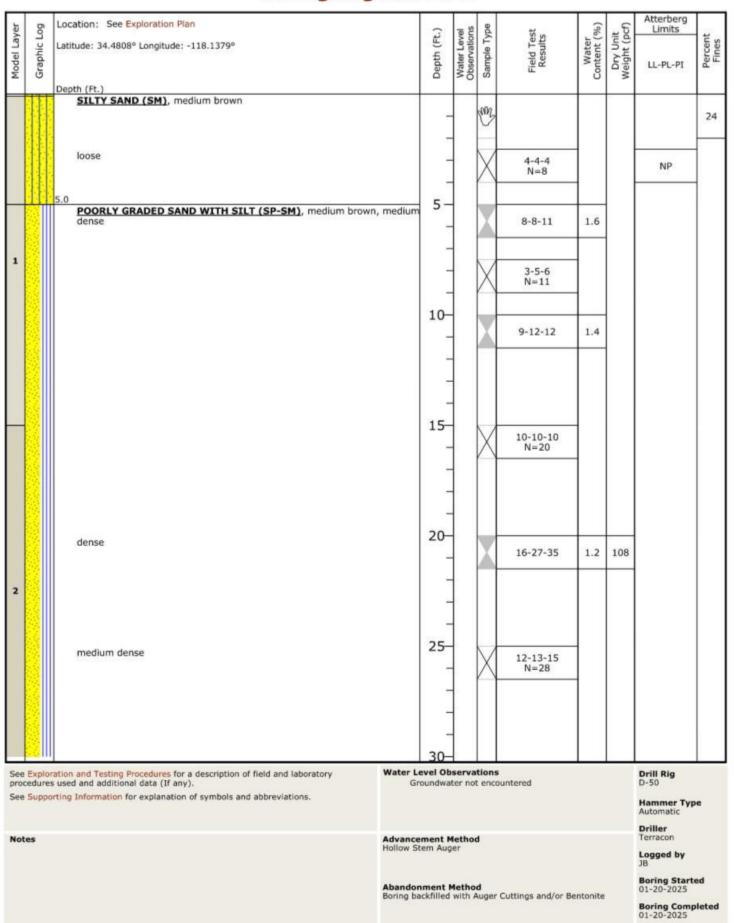
P g	A VALA & SA		$\overline{}$			$\overline{}$		Attacheur	_
> 4	Location: See Exploration Plan	្ន	le Si	ed/	s st	(%	Dry Unit Weight (pcf)	Atterberg Limits	1.
Graphic Log	Latitude: 34.4871° Longitude: -118.1358°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	it Chi		Percent
rap		epti	Vater	amp	Re	onte	Dry /eigl	LL-PL-PI	Per
2 0	Depth (Ft.)		>0	S		0	5		l
	POORLY GRADED SAND WITH SILT (SP-SM), trace gravel, light very dense	t brown,		M	19-29-50/4"				
	very delise	-	1	\triangle	15 25 30,1	-			
		T-							
		25							
		35-	1	M	28-34-39	1			
		-		\triangle	N=73	1			
		-	1						
			-						
	40.0	40-							
2	SILTY SAND (SM), brown and gray, very dense	140		M	18-38-48				
		-	1	\triangle	N=86				
		_	1						
		-	-						
		-	1						
111	45.0	45-				1			
0	SILTY SAND WITH GRAVEL (SM), reddish brown, very dense			M	29-34-50/5"				
100				\vdash	000000000000000000000000000000000000000	1			
0	d and the second se	7	1						
19		-							
0		-	1						
Pe		50-			INCO O DECOMENSO	-			
P	50.9		_	X	25-50/5"	-			-
	Boring Terminated at 50.9 Feet								
				ΙI				l	
ee Explo	eration and Testing Procedures for a description of field and laboratory sused and additional data (If any).	Water Level Ob Groundwa						Drill Rig D-50	
rocedure ee Suppo	is used and additional data (If any). orting Information for explanation of symbols and abbreviations.							D-50 Hammer Typ	oe.
rocedure see Suppo	s used and additional data (If any).							D-50 Hammer Typ Automatic	oe e
rocedure see Suppo	used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Groundwa	ter no	t enco				D-50 Hammer Typ	ne e
rocedure see Suppo levation	used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Groundwa	ter no	t enco				D-50 Hammer Typ Automatic Driller Terracon	oe e
rocedure see Suppo levation	es used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth A	Groundwa Advancement N Hollow Stem Aug	ter no	t encc				D-50 Hammer Typ Automatic Driller Terracon Logged by OW	
rocedure ee Suppo levation	es used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth A	Groundwa Advancement Mollow Stem Aug	ter no	t enco		entonite		D-50 Hammer Typ Automatic Driller Terracon	

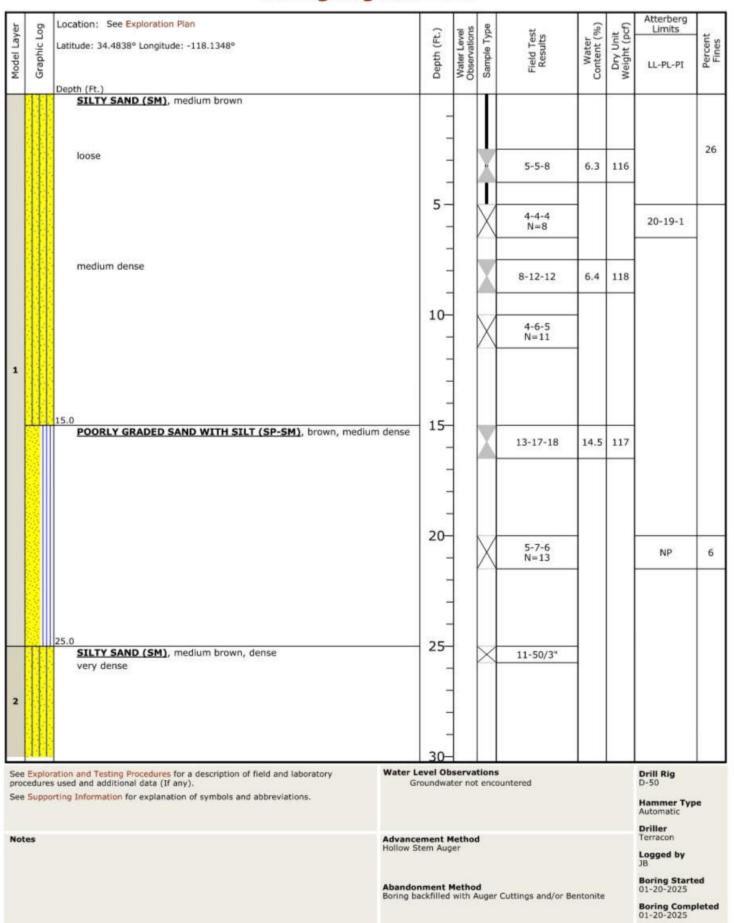
Boring Log No. OM-1



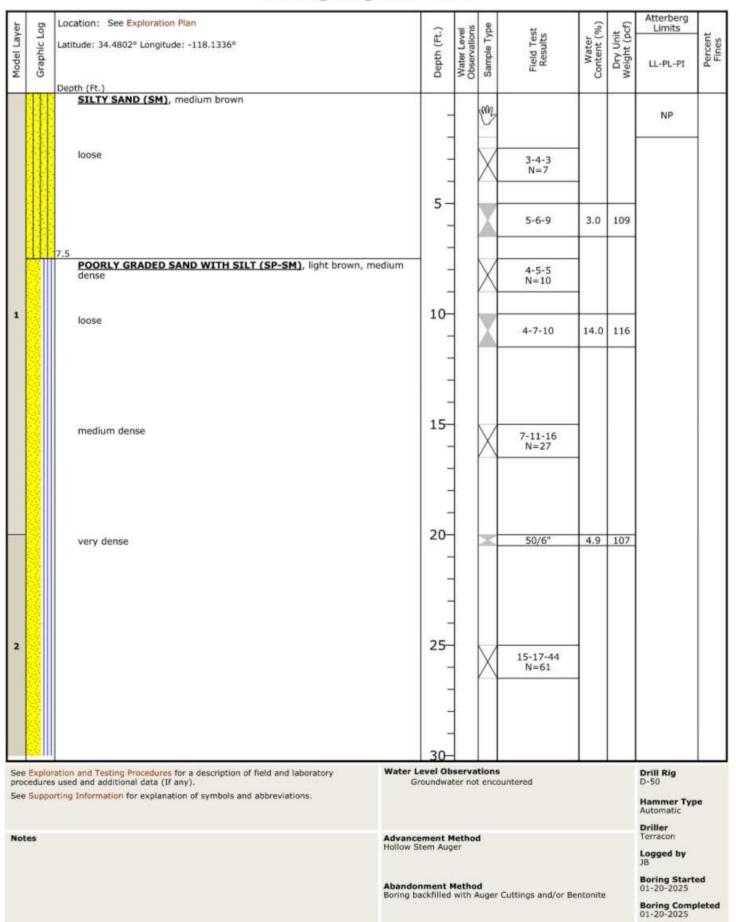

Boring Log No. OM-2

	cestion. For Evoluentian Plan						Т		Atterberg	Т
ا 2 ا <u>﴿</u>	Location: See Exploration Plan Latitude: 34.4860° Longitude: -118.1389°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits	Percent
			Dept	Water	Samp	Fiel Re	Conte	Dry	LL-PL-PI	Pe
	Depth (Ft.) CLAYEY SAND (SC), trace gravel, brown				Н		\vdash			\vdash
			20	6	m					
	loose		7.7				-			_
					X	2-2-4 N=6				30
5	6.0		5 –							
	SILTY CLAYEY SAND (SC-SM), brown, loose		_		Х	5-5-9	4.4	105		
. 11			-	0.						
			200		M	6-7-9 N=16			21-17-4	44
W.	0.0		-			30000000				
	SILTY SAND (SM), brown, medium dense		10-		Y	9-10-12	2.5	110		
					_					
			-							
1	5.0 POORLY GRADED SAND (SP), trace silt, light brown, medium	dense	15–	å s	M	3-6-10	+			
			-	Œ	Д	N=16				
			-							
2			_							
	dense		20-				_			
2	dense		<u>=</u>	8	X	46-46-37	3.0	118		
	Boring Terminated at 21.5 Feet				П					
		100010	2-2-0							
rocedures u	tion and Testing Procedures for a description of field and laboratory used and additional data (If any).	Water Leve Grou				untered			Drill Rig D-50	
	ing Information for explanation of symbols and abbreviations. eference: Elevations obtained from Google Earth								Hammer Typ Automatic	e
Notes		Advancem	ent M	letho	d				Driller Terracon	
		Hollow Sten	n Aug	er					Logged by OW	
									OII	
		Abandonm Boring back				Cuttings and/or B	entonite		Boring Start 12-18-2024	ed

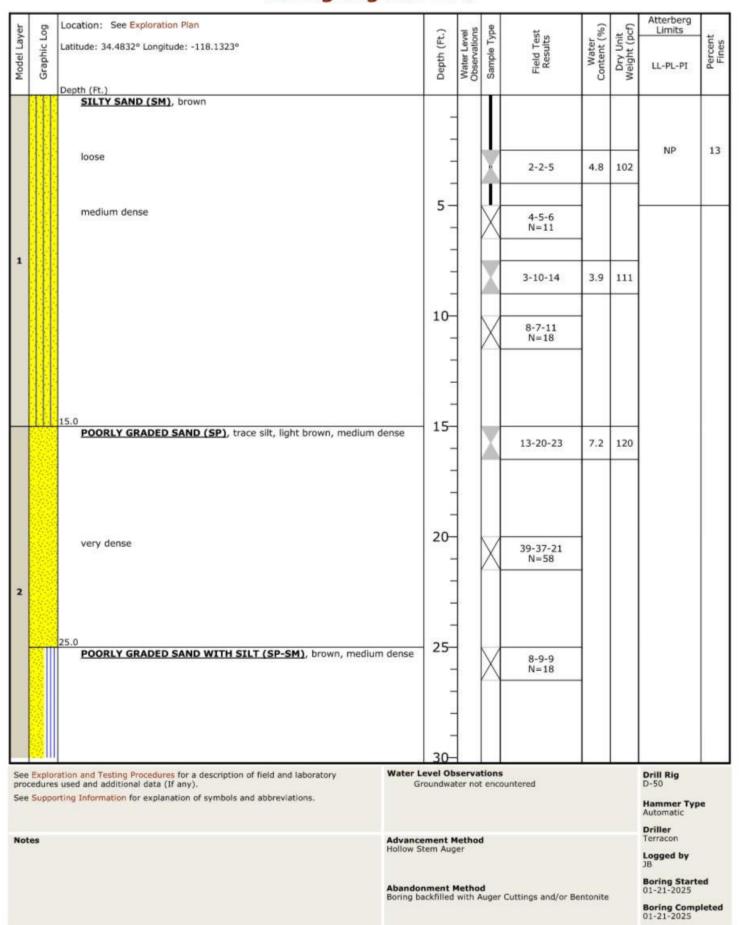




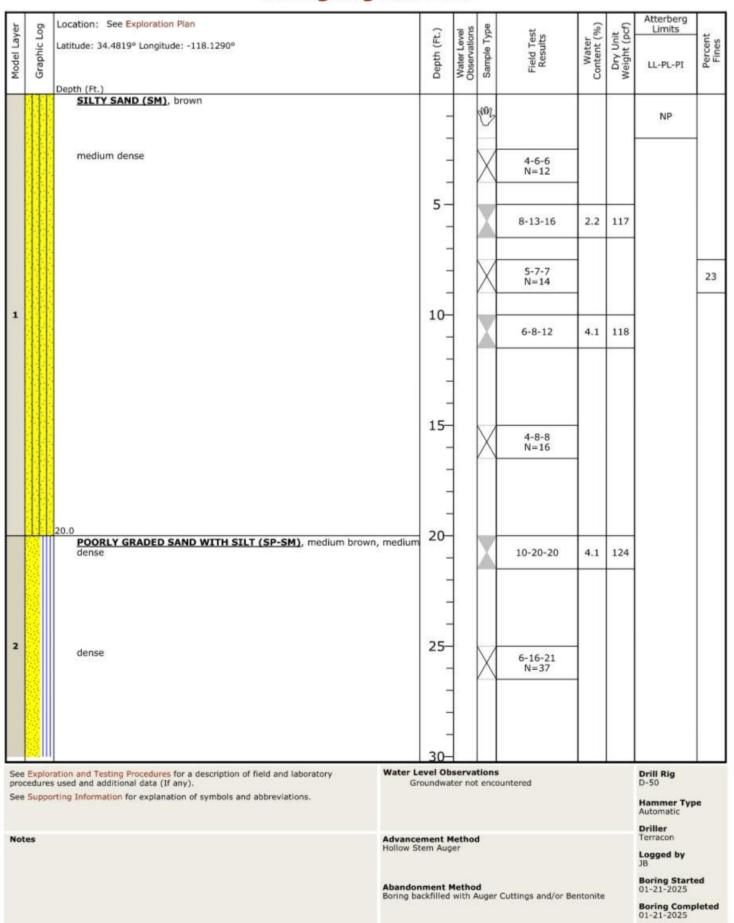
-	V VMA 69 5-99 - 90 - 90 - 90 - 90 - 90 - 90 - 9		-	_		_		Abback	_
log Log	Location: See Exploration Plan	<u> </u>	le ye	ype	SS	(%)	Dry Unit Weight (pcf)	Atterberg Limits	± .
Model Layer Graphic Log	Latitude: 34.4808° Longitude: -118.1379°	Depth (Ft.)	Water Level	Sample Type	Field Test Results	Water Content (%)	ry Ur ght (Percent
Moc Gra		Deg Deg	Wat	San	E &	Co	Wei	LL-PL-PI	4
	Depth (Ft.) POORLY GRADED SAND WITH SILT (SP-SM), medium brown,	dense	-	1	16-19-22	+			\vdash
			-	X	16-19-22 N=41				
			-						
			-						
			-						
		35	Н		8-20-26	-			
			+	X	N=46				
			-						
			-						
			-						
		40	Н		8-14-19	1			
2			-	X	8-14-19 N=33				10
			-						
			-						
			-						
		45	Η		14-18-19	1			
養			-	X	14-18-19 N=37				
			-						
			-						
			-						
	medium dense	50	Н		13-14-13	1			
	51.5		_	\triangle	13-14-13 N=27	\perp			\perp
	Boring Terminated at 51.5 Feet								
Tax Suele	Tables and Tables Recordings for a description of fold and laborators	Water Level (heery	ation		_		Daill Blo	
rocedure	s used and additional data (If any).				ountered			Drill Rig D-50	
ee Supp	orting Information for explanation of symbols and abbreviations.							Hammer Typ Automatic	e
Notes		Advancement	Meth	nd				Driller Terracon	
iotes		Hollow Stem A	uger					Logged by	
								JB Boring Start	ed
		Abandonmen Boring backfille	Meth d with	od Auger	Cuttings and/or B	entonite		Boring Start 01-20-2025	
								Boring Comp 01-20-2025	oletec



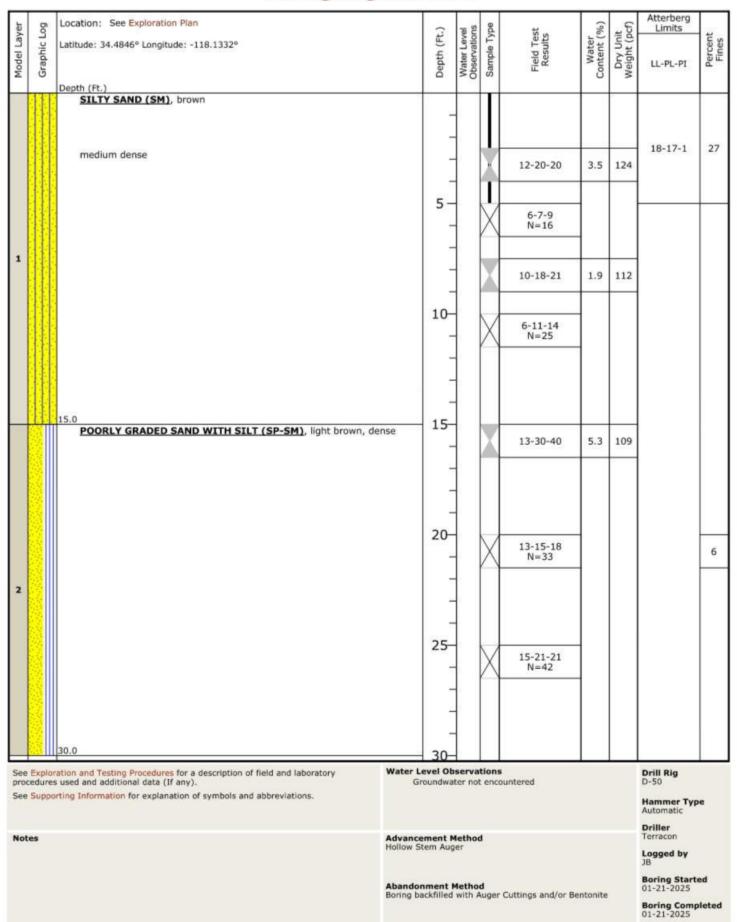
_			_	_	77	_		Attaches	_
Model Layer Graphic Log	Location: See Exploration Plan	£	vel	уре	ss s	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits	<u>+</u>
Model Layer Graphic Log	Latitude: 34.4838° Longitude: -118.1348°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Vate	ght C		Percent
Mod Gra		Dep	Wat	Sam	FI &	Con	Wei	LL-PL-PI	a .
111	Depth (Ft.) SILTY SAND (SM), medium brown, very dense (continued)	744	-			+			-
			-	X	16-22-24 N=46				
		,	-			1			
			-						
			-						
		35-				1			
			1	M	20-28-28 N=56				
				M	W 11 TV AVA	1			
		40-							
2		40		M	16-21-21 N=42				
			1	H	N=42	-			
			1						
		4-	1						
		45-	1	X	24-50/6"	1			
		,	1			1			
			1						
		,	1						
111			1						
		50-	1	M	31-42-40	1			
11	51.5		╙	Δ	31-42-40 N=82	\perp			_
	Boring Terminated at 51.5 Feet								
ee Explo	oration and Testing Procedures for a description of field and laboratory es used and additional data (If any).	Water Level Of Groundwa						Drill Rig D-50	
	orting Information for explanation of symbols and abbreviations.	3-13-3-19-10						Hammer Typ	oe .
								Automatic Driller	
lotes		Advancement Hollow Stem Au	Metho	d				Terracon	
		Total Stell Au						Logged by JB	
		Abandonment	Metho	d				Boring Start 01-20-2025	ed
		Boring backfilled	with .	Auger	Cuttings and/or B	entonite		Boring Comp	
								01-20-2025	



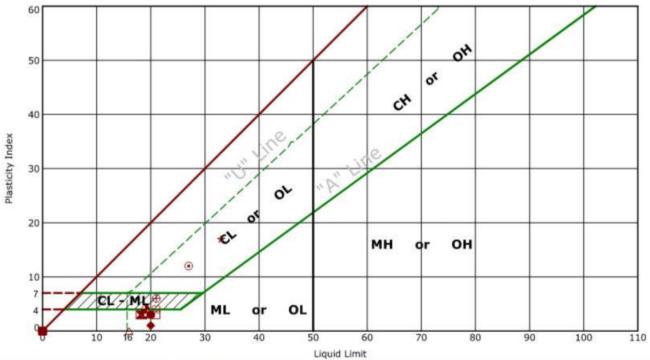
h -	Location: See Exploration Plan					_	-	Atterberg Limits	Т
Model Layer Graphic Log	Latitude: 34.4802° Longitude: -118.1336°	Depth (Ft.)	Water Level	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Limits	ent
odel		that the	ater l	ample	Resu	Wat	Dry l	LL-PL-PI	Percent
ΣÖ	Depth (Ft.)	ă	3 8	S	T.	8	- 3		1000
	POORLY GRADED SAND WITH SILT (SP-SM), light brown, me	dium	1	V	13-13-15	\vdash			
2	very dense	35 40 45		X	13-13-15 N=28 14-19-21 N=40 17-38-40 N=78 16-27-29 N=56				6
- 63	51.5 Boring Terminated at 51.5 Feet		1	\wedge	N=53	₩			-
procedure	oration and Testing Procedures for a description of field and laboratory es used and additional data (If any). Forting Information for explanation of symbols and abbreviations.	Water Level (Grounds			ountered			Drill Rig D-50 Hammer Typ Automatic	oe .
lotes		Advancement Hollow Stem A	Meth uger	od				Driller Terracon Logged by JB	
		Abandonmen Boring backfille	t Meth	od Auger	Cuttings and/or Bo	entonite		Boring Start 01-20-2025 Boring Comp 01-20-2025	



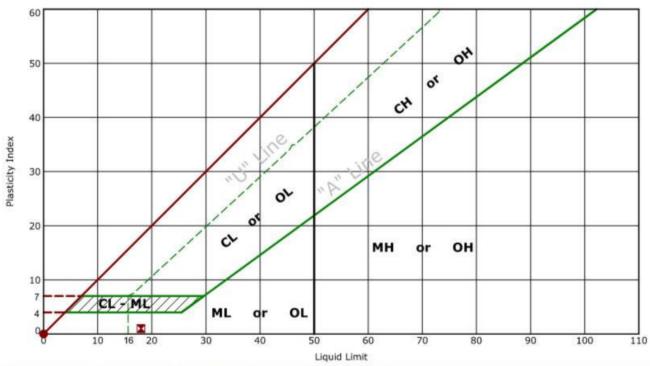
_						_		Attorhore	_
ayer	Location: See Exploration Plan	£	ivel	Lype	est	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits	#
Model Layer Graphic Log	Latitude: 34.4832° Longitude: -118.1323°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Wate	ry Ur	LL-PL-PI	Percent
δ. G.		Ded	Wa	Sar	Ē.	S	Wei	LL-PL-PI	"
	Depth (Ft.) POORLY GRADED SAND WITH SILT (SP-SM), brown, medium	dense	+	M	9-11-10	+			
		'	1	A	9-11-10 N=21	1			
			1						
			-						
			+						
11	35.0 SILTY SAND (SM), medium brown, medium dense	35	-		7-10-10	-			
			1	X	N=20				
		,	-]			
			1						
			-						
	dense	40-	1		7.15.15	-			
2	46 E00(2000)		-	X	7-15-15 N=30				
			-]			
			-						
			1						
		45-	-		10.12.17	+			
			-	X	10-13-17 N=30				
			+			1			
			-						
			+						
		50-	-		45 40 24	-			
	51.5		-	X	16-19-21 N=40				
	Boring Terminated at 51.5 Feet								
ee Exp	oration and Testing Procedures for a description of field and laboratory res used and additional data (If any).	Water Level Of Groundwa						Drill Rig D-50	
	porting Information for explanation of symbols and abbreviations.	3000 CONTRACTOR			No. 1788 (1988)			Hammer Typ	е
								Automatic Driller	
lotes		Advancement Hollow Stem Au	Metho ger	d				Terracon	
								JB	
		Abandonment Boring backfiller	Metho	d	Cuttings and/or B	entonito		Boring Start 01-21-2025	ed
		boring backfilled	With	nuger	cuttings and/or B	enconice		Boring Comp	lete
								01-21-2025	neceo



-	A 250 S 3 3 N		_			_		Attorbore	_
lyer Log	Location: See Exploration Plan	a	level	уре	S	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits	4
Model Layer Graphic Log	Latitude: 34.4819° Longitude: -118.1290°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	/ater	y C		Percent
Mod		Sept	Wate	Sam	Fiel 86	Sont	Dr	LL-PL-PI	P.
	Depth (Ft.)					L			
	POORLY GRADED SAND WITH SILT (SP-SM), medium brown, in dense (continued)	medium		M	16-21-27				
			7	\triangle	N=48	-			
			-						
			-						
			4						
		35							
		33		M	21-21-27				
			7	\triangle	N=48	1			
			1						
			1						
			-						
		40	4						
2	very dense	10		X	26-50/6"				
			7						
			1						
			+						
			-						
- 4	45.0	45	4			-			<u> </u>
	SILTY SAND (SM), brown, very dense			X	16-22-29 N=51				28
					11-51	-			
			7						
- 11			1						
- 114			+						
		50	-		14549000000 1154 54 5	-			
		20000	4	IXI	14-22-32 N=54				
11	51.5 Boring Terminated at 51.5 Feet			\vdash	200 Table	+			
		Share Salar				_	_		_
rocedu	oration and Testing Procedures for a description of field and laboratory res used and additional data (If any).	Water Level O Groundw						Drill Rig D-50	
	porting Information for explanation of symbols and abbreviations.							Hammer Typ	е
								Automatic	r10
Notes		Advancement	Metho	d				Driller Terracon	
		Hollow Stem Au	ger	55135				Logged by	
								JB	
		Abandonment Boring backfille	Metho	Auger	Cuttings and/or B	entonite		Boring Start 01-21-2025	ed
		- July Duckinic			ge unity or D	The state of the s		Boring Comp	lete
								01-21-2025	



<u>.</u>	D. Location: See Exploration Plan						6	Atterberg Limits	Т
Model Layer	Latitude: 34.4846° Longitude: -118.1332°	Depth (Ft.)	Water Level	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent
Mod		Dep	Wat	Sam	Fig.	Cont	Weig	LL-PL-PI	3
	Depth (Ft.) SILTY SAND (SM), medium brown, dense		+	M	13-16-18	+			
			1	А	N=34	-			
1]						
	35.0 POORLY GRADED SAND WITH SILT (SP-SM), light brown,	dense 35	-			-			
		00.150	+	X	16-23-23 N=46				
			-						
	40.0	40							
	SILTY CLAY (SM), brown, very dense		-	X	13-28-29 N=57				
			-			1			
2			-						
		45							
	dense	1 43		M	13-27-19 N=46				
			-						
			-						
		-	1						
	very dense	50		M	18-28-29 N=57	1			
-	Boring Terminated at 51.5 Feet		\vdash		25.074	\vdash			
		Water Level C	heary	ations				Dalli Bla	
roced	xploration and Testing Procedures for a description of field and laboratory dures used and additional data (If any). upporting Information for explanation of symbols and abbreviations.				ountered			Drill Rig D-50	
								Automatic	e
lotes	•	Advancement Hollow Stem A	Metho	d				Driller Terracon	
								JB	
		Abandonment Boring backfille	Method with	od Auger	Cuttings and/or B	entonite		Boring Start 01-21-2025	
								Boring Comp 01-21-2025	oletec


Atterberg Limit Results

						Eldaia		
	Boring ID	Depth (Ft)	LL	PL	PI	Fines	uscs	Description
•	BESS-1	10 - 11.5	20	17	3	25.2	SM	SILTY SAND
	BESS-4	0 - 2,5	18	15	3	18.2	SM	SILTY SAND
•	BESS-4	15 - 16.5	NP	NP	NP	11.2	SM	SILTY SAND
*	BESS-6	20 - 21.5	NP	NP	NP	15.6	SM	SILTY SAND
0	BESS-7	0 - 5	27	15	12	30.5	sc	CLAYEY SAND
0	BESS-8	2.5 - 4	19	16	3	25.6	SM	SILTY SAND
0	BESS-10	7.5 - 9	NP	NP	NP	26.4	SM	SILTY SAND
Δ	BESS-11	0 - 5	16	16	NP	18.6	SM	SILTY SAND with GRAVE
8	BESS-13	10 - 11.5	NP	NP	NP	12.1	SM	SILTY SAND with GRAVELL
	BESS-15	0 - 5	21	15	6	41.0	SC-SM	SILTY, CLAYEY SAND
	P-1	0 - 1.5	21	18	3	27.3	SC-SM	Silty Clayey Sand
9	P-4	0 - 2.5	NP	NP	NP	9.1	SP	Poorly Graded Sand
9	SUB-1	5 - 6.5	19	15	4	19.9	SC-SM	SILTY, CLAYEY SAND
*	OM-1	0 - 5	33	16	17	49.9	sc	CLAYEY SAND
3	OM-2	7.5 - 9	21	17	4	44.2	SC-SM	SILTY, CLAYEY SAND
	TL-2	2.5 - 4	NP	NP	NP		SM	SILTY SAND
٠	TL-3	5 - 6.5	20	19	1		SM	SILTY SAND
0	TL-3	20 - 21.5	NP	NP	NP	6.2	SP-SM	POORLY GRADED SAND with SILT
×	TL-4	0 - 2	NP	NP	NP		SM	SILTY SAND
*	TL-5	0 - 5	NP	NP	NP	12.9	SM	SILTY SAND

Atterberg Limit Results

Boring ID	Depth (Ft)	LL	PL	PI	Fines	uscs	Description
TL-6	0 - 2	NP	NP	NP		SM	SILTY SAND
TL-7	0 - 5	18	17	1	27.4	SM	SILTY SAND

■ BESS-11

SUB-2

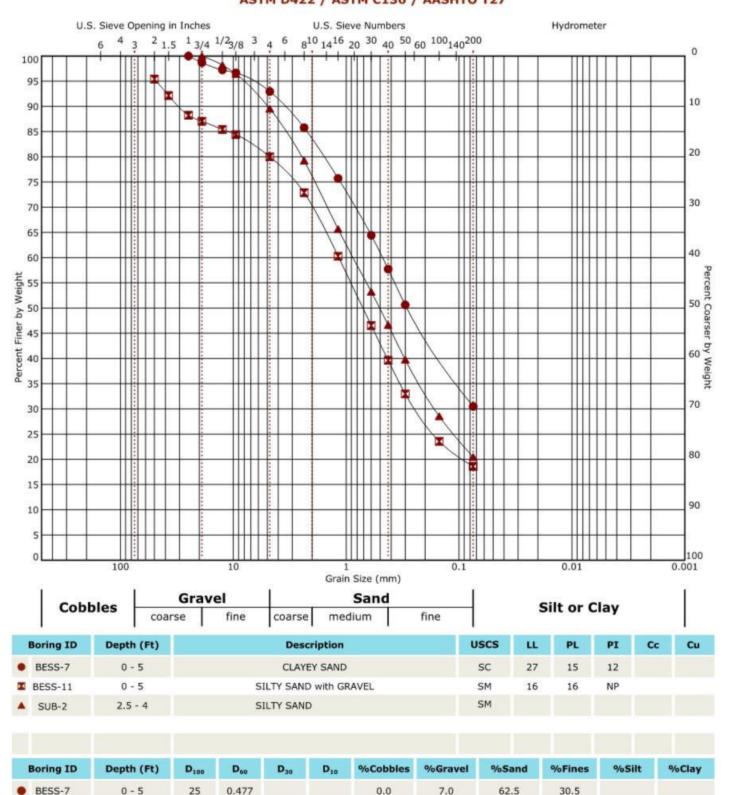
0 - 5

2.5 - 4

50

19

1.163


0.867

0.241

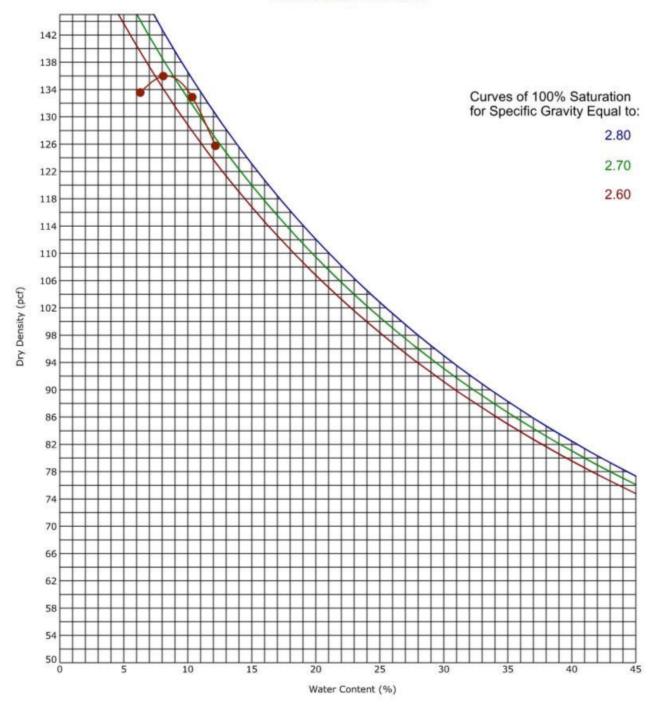
0.164

Grain Size Distribution ASTM D422 / ASTM C136 / AASHTO T27

18.6

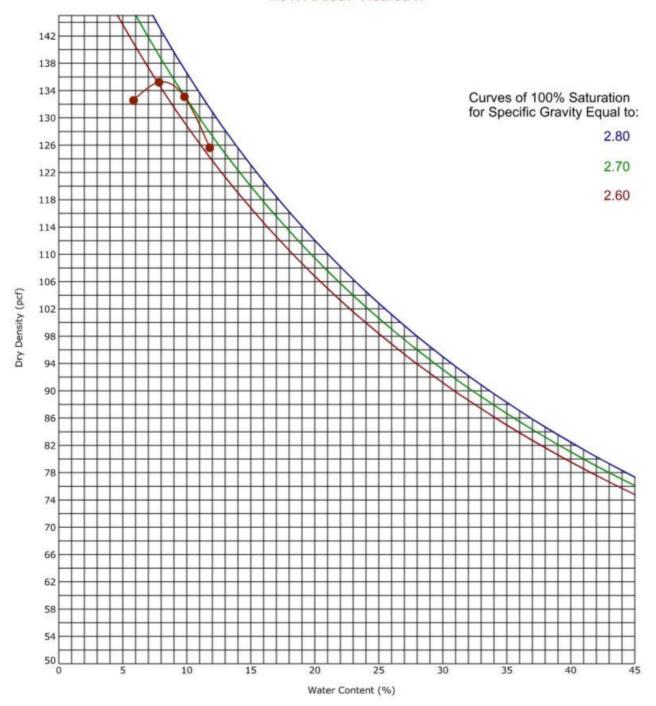
20.4

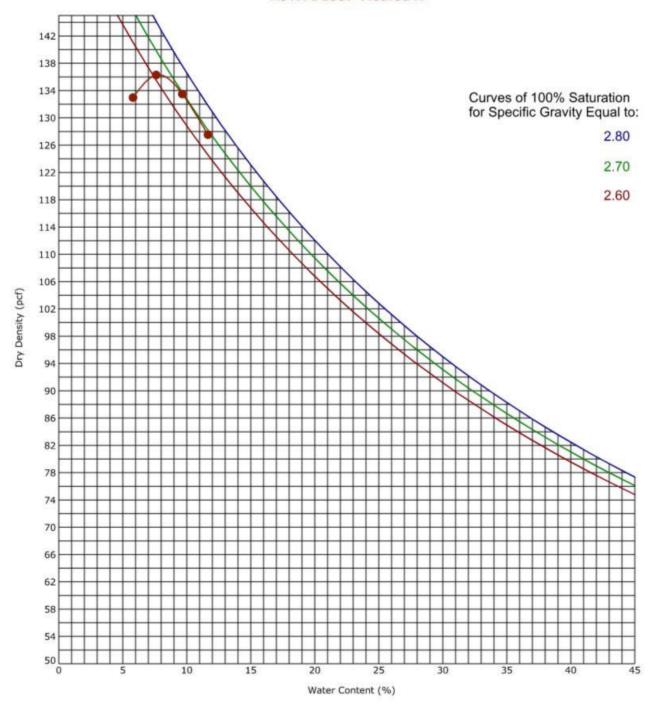
15.4

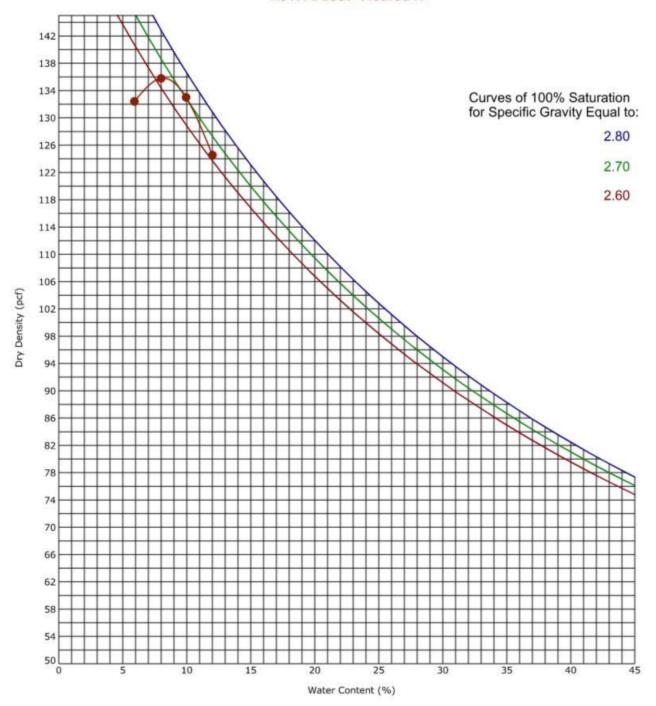

10.5

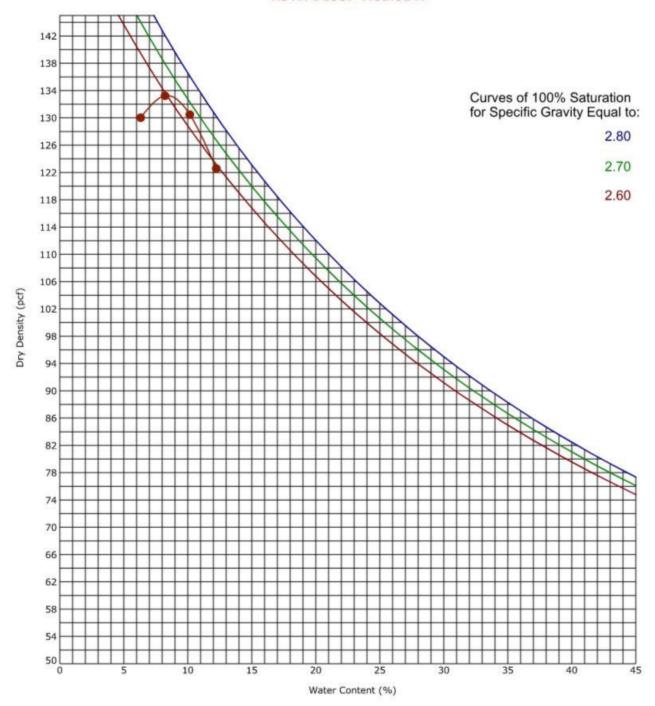
0.0

61.4

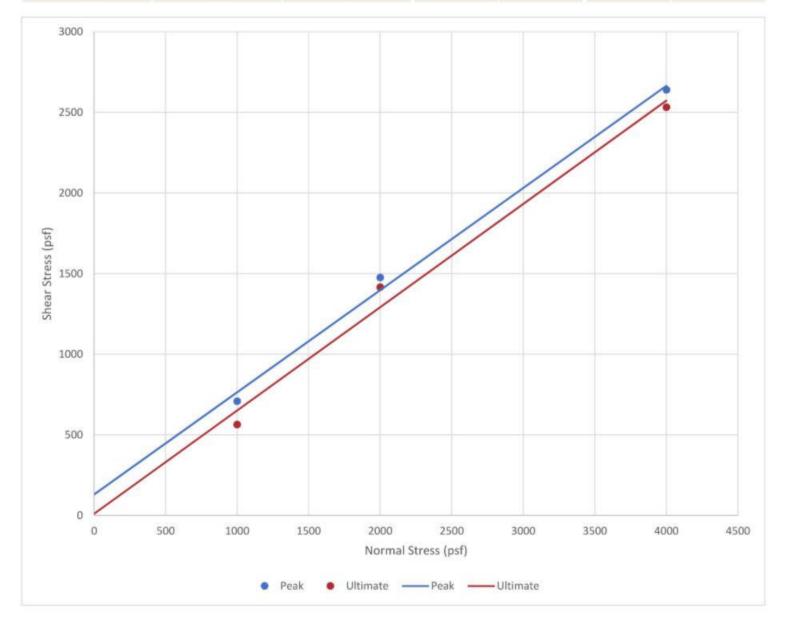

69.1


Boring ID Depth (Ft)			Description of Materials				
BESS-1 0 - 5				SILTY SAND			
Fines (%)	Fraction > mm size	LL	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)
32					ASTM D1557-Method A	136.0	8.3


Bess-3 Depth (Ft)				Description of Materials SILTY SAND			
Fines (%)	Fraction > mm size	ш	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)
					ASTM D1557-Method A	135.3	8.1

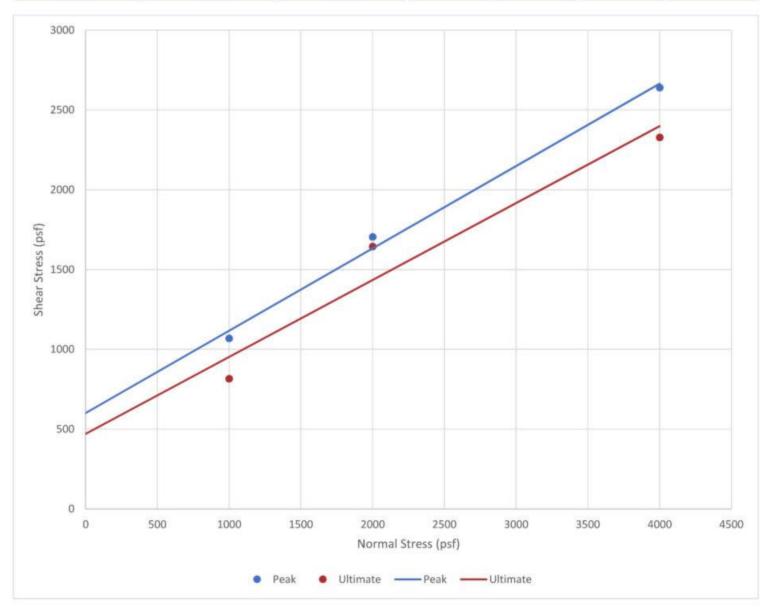

Bess-5 Depth (Ft)				Description of Materials				
				SILTY SAND				
Fines (%)	Fraction > mm size	LL	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)	
17					ASTM D1557-Method A	136.3	7.8	

Boring ID Depth (Ft)			Description of Materials				
BESS-13 0 - 5				SILTY SAND			
Fines (%)	Fraction > mm size	LL	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)
41					ASTM D1557-Method A	135.8	8.2

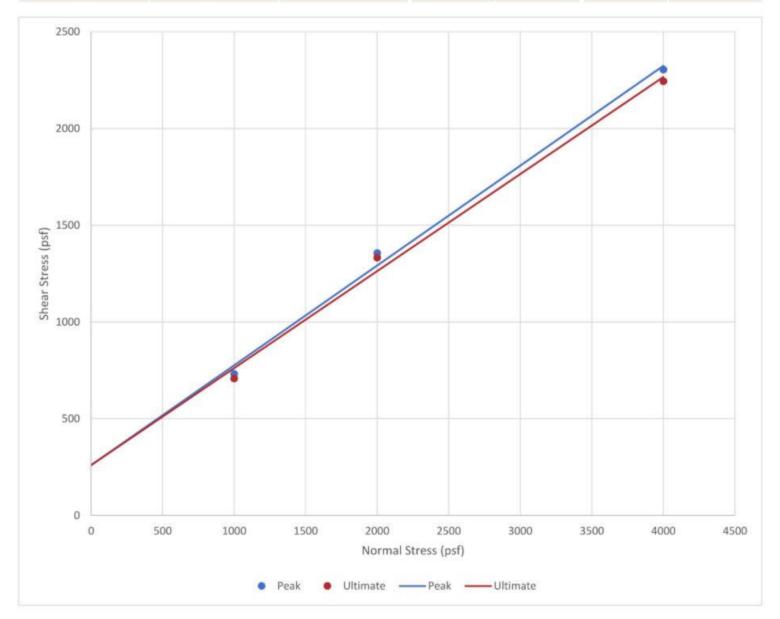


Boring ID Depth (Ft) SUB-1 0 - 5				De	escription of Materials		
				SILTY SAND with GRAVEL			
Fines (%)	Fraction > mm size	LL	PL	PI	Test Method	Maximum Dry Density (pcf)	Optimum Water Content (%)
28					ASTM D1557-Method A	133.3	8.4

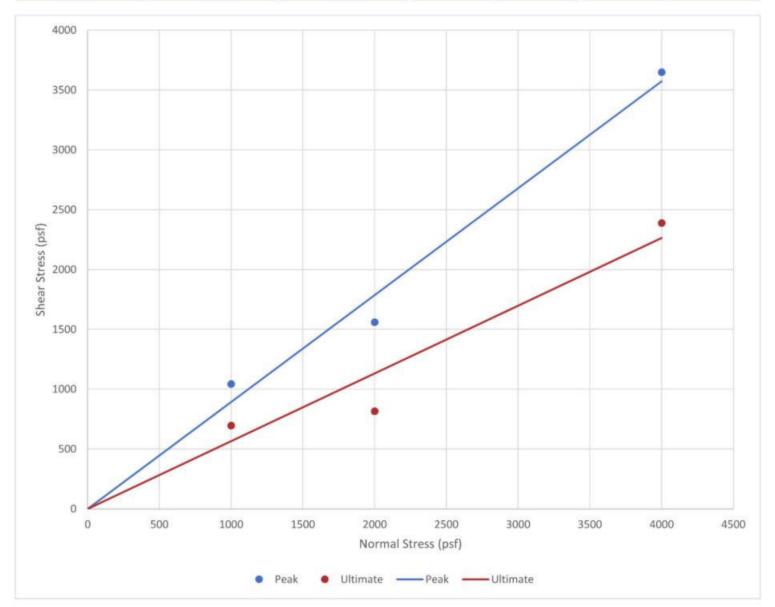
Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
BESS-4	5	Silty Sand	SM	121	2.5


Name of Change	Bank Chan Street	Ultimate Shear	P	eak	Ultimate	
Normal Stress (psf)	Peak Shear Stress (psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	708	564				
2000	1476	1416	32.0	130	33.0	10
4000	2640	2532				

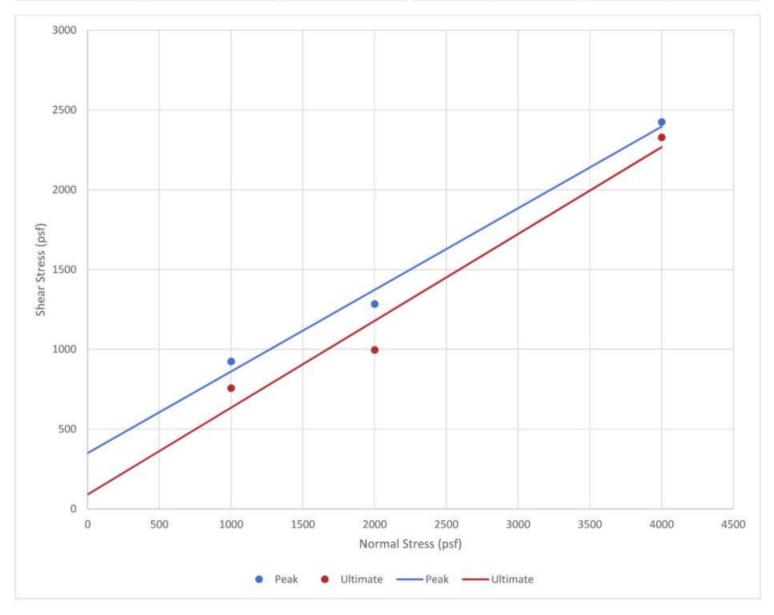
Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
BESS-8	10	Silty Sand	SM	116	2.7


Name Charac	Peak Shear Stress	Ultimate Shear	P	eak	Ultimate	
Normal Stress (psf)	(psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	1068	816		600	26.0	470
2000	1704	1644	27.0			
4000	2640	2328				

Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)	ı
BESS-14	5	Silty Sand with Gravel	SM	119	3.5	

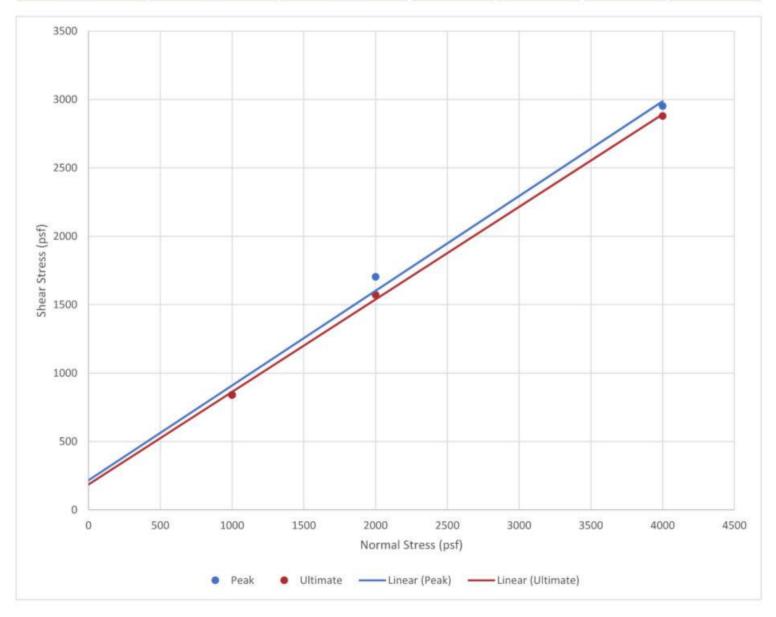

Name of Charles	Bank Chan Street	Ultimate Shear	P	eak	Ultimate	
Normal Stress (psf)	Peak Shear Stress (psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	732	708				
2000	1356	1332	27.0	260	27.0	250
4000	2304	2244				

Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
TL-2	10	Silty Sand	SM		1.4


Normal Stress (psf)	Peak Shear Stress (psf)	Ultimate Shear Stress (psf)	Peak		Ultimate	
			φ°	C (psf)	φ°	C (psf)
1000	1044	696	42.0	o	31.0	0
2000	1560	816				
4000	3648	2388				

Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
TL-3	2.5	Silty Sand	SM	116	6.3

Normal Stress (psf)	Peak Shear Stress (psf)	Ultimate Shear Stress (psf)	Peak		Ultimate	
			φ°	C (psf)	φ°	C (psf)
1000	924	756	27.0	350	29.0	90
2000	1284	996				
4000	2424	2328				

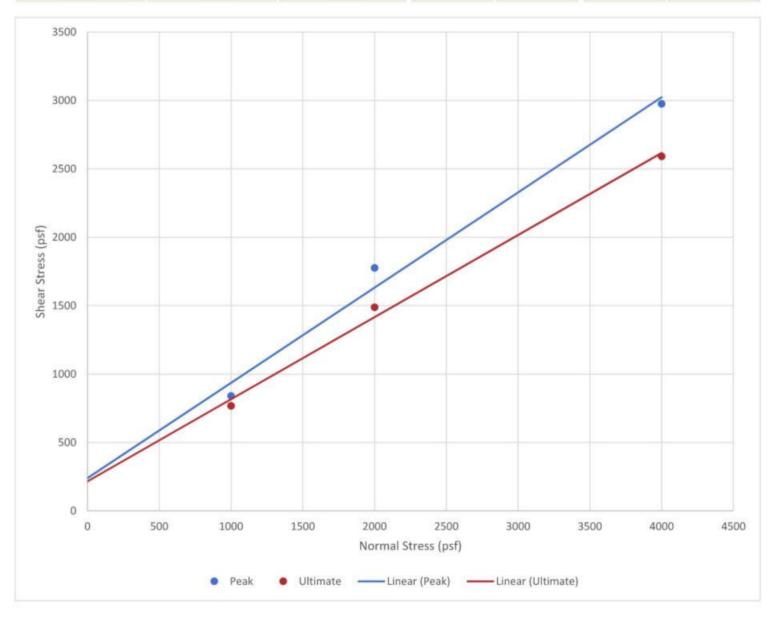


Direct Shear Test

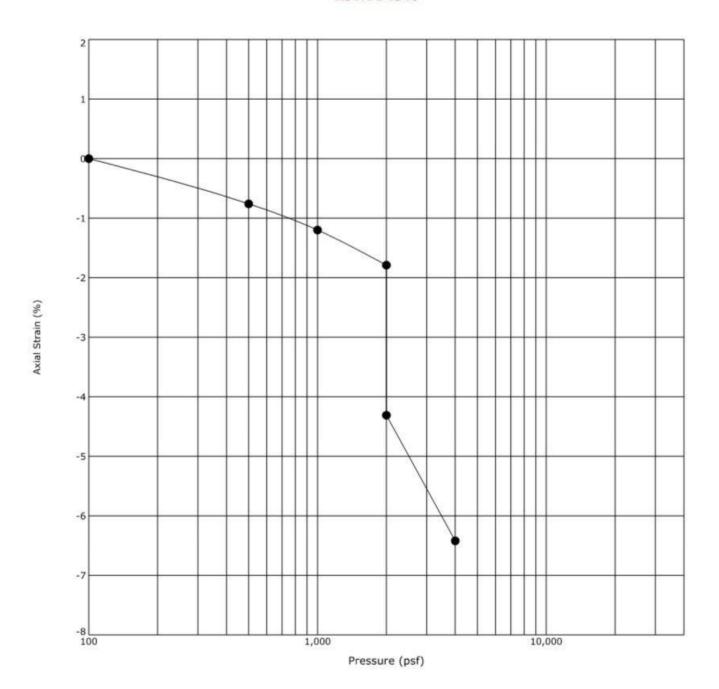
ASTM D3080

Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
TL-5	7.5	Silty Sand	SM	111	3.9

Name Change	Dook Chass Chass	Ultimate Shear	Peak		Ultimate	
Normal Stress Peal (psf)	Peak Shear Stress (psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	840	840		220	34.0	
2000	1704	1572	35.0			190
4000	2952	2880				



Direct Shear Test


ASTM D3080

Boring ID	Depth (ft)	Description	USCS	γ _d (pcf)	W(%)
TL-6	5	Silty Sand	SM	117	2.2

Named Chase	Peak Shear Stress	Ultimate Shear Peak		eak	Ultimate	
Normal Stress (psf)	(psf)	Stress (psf)	φ°	C (psf)	φ°	C (psf)
1000	840	768				
2000	1776	1488	35.0	240	31.0	220
4000	2976	2592				

One-Dimensional Swell or Collapse ASTM D4546

В	Boring ID	Depth (Ft)	Description	uscs	$\gamma_{d(pcf)}$	WC (%)
•	OM-2	5 - 6.5	CLAYEY SAND	SC	105	4.4
Note	s: Water added a	at 200 pcf				

TRANSMITTAL LETTER

DATE: January 31, 2025

ATTENTION: Janna Valdez

TO: Terracon - Carson

145 W Walnut Street Carson, CA 90248

SUBJECT: Laboratory Test Data

Prairie Song Reliability Project

Keegan Labs #25-0016

Terracon - Carson #LA245085

COMMENTS: Enclosed are the results for the subject project.

Dr. James T. Keegan

President and Founder

Table 1 - Laboratory Tests on Soil Samples

Terracon - Carson Prairie Song Reliability Project Keegan Labs #25-0016, Your #LA245085 31-Jan-25

Sample ID			BESS-2 @ 0-2'	BESS-8 @ 0-2.5'	BESS-14 @ 0-2.5'	SUB-2 @ 0-2.5'	TL-1 @ 0-5'
Resistivity		Units					
saturated		ohm-cm	10,250	8,140	5,230	6,840	18,100
рН			7.1	7.4	7.7	7.3	7.7
Electrical							
Conductivity		mS/cm	0.02	0.05	0.05	0.04	0.03
Cations		Total Sa	lts)				
sodium	Na ¹⁺	mg/kg	6.1	4.4	5.7	6.0	6.0
ammonium	$\mathrm{NH_4}^{1+}$	mg/kg	0.3	1.0	0.5	0.4	0.4
potassium	K_{1+}	mg/kg	1.7	26	17	5.4	5.4
magnesium	Mg ²⁺	mg/kg	1.5	2.3	3.9	0.7	0.9
calcium	Ca ²⁺	mg/kg	9.4	19	18	20	5.8
Anions							
carbonate	CO32-	mg/kg	ND	ND	ND	ND	ND
bicarbonate	HCO ₃	mg/kg	12	49	61	43	6.1
fluoride	F1-	mg/kg	4.5	5.1	4.8	4.7	4.4
chloride	C11-	mg/kg	5.8	7.7	6.2	6.6	6.5
nitrate	NO ₃ 1-	mg/kg	6.3	7.8	7.1	7.4	6.3
phosphate	PO4 3-	mg/kg	8.0	9.3	7.1	7.7	5.7
sulfate	SO42-	mg/kg	1.6	9.7	6.5	4.1	9.2
Other Tests							
sulfide	S2-	mg/kg	ND	ND	ND	ND	ND
Redox		mV	278	290	282	291	288
% Moisture	H_2O	왕	na	na	na	na	na

For test methods refer to Laboratory Test Methods attachment

Conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

ND = not detected

na = not analyzed

Table 1 - Laboratory Tests on Soil Samples

Terracon - Carson Prairie Song Reliability Project Keegan Labs #25-0016, Your #LA245085 31-Jan-25

Sample ID			TL-3 @ 0-5'	TL-6 @ 0-5'	
Resistivity		Units			
saturated		ohm-cm	13,070	21,110	
рН			7.1	7.0	
Electrical					
Conductivity		mS/cm	0.02	0.02	
Chemical Analy	rses (Total Sa	lts)		
Cations					
sodium	Na ¹⁺	mg/kg	3.8	4.2	
ammonium	$\mathrm{NH_4}^{1+}$	mg/kg	0.3	0.3	
potassium	K^{1+}	mg/kg	9.6	4.4	
magnesium	Mg^{2+}	mg/kg	1.5	1.3	
calcium	Ca ²⁺	mg/kg	2.7	4.4	
Anions					
carbonate	CO32-	mg/kg	ND	ND	
bicarbonate	HCO31	mg/kg	12	6.1	
fluoride	F1-	mg/kg	4.5	4.5	
chloride	C11-	mg/kg	6.5	5.4	
nitrate	NO_3^{1-}		6.5	5.8	
phosphate	PO ₄ 3-	mg/kg	8.0	6.4	
sulfate	SO4 2-	mg/kg	2.4	0.2	
Other Tests					
sulfide	S2-	mg/kg	ND	ND	
Redox		mV	288	293	
% Moisture	H ₂ O	양	na	na	

For test methods refer to Laboratory Test Methods attachment

Conductivity in millisiemens/cm and chemical analyses were made on a 1:5 soil-to-water extract. mg/kg = milligrams per kilogram (parts per million) of dry soil.

ND = not detected

na = not analyzed

LABORATORY TEST METHODS

DATE: January 1, 2024

LABORATORY TESTS	METHODS	RELEVANT ALTERNATE METHODS
Electrical Resistivity of Soil	ASTM G-187	ASTM G-57, AASHTO T288
Minimum Electrical Resistivity	CTM 643	AASHTO T-288
pH of Soil	ASTM G-51	CTM 643, SMWW-H*, ASSHTO T289
Anions in Water*	ASTM D4327	EPA 300, EPA 353.2, EPA 325.1, ASTM D516, SMWW 4500B
Cations in Water*	ASTM D6919	EPA 300
Chloride and Sulfate in Soil	CTM 422 & 417	ASSHTO T290 & T291
Alkalinity of Water*	ASTM D1067	SMWW 2320, EPA 305.1
Total Acidity/Alkalinity*	NIST RP539	
Sulfide (qualitative)	AWWA C-105	
Sulfide (quantitative)	ASTM D4658	EPA 376.2
Thermal Conductivity of Soil	ASTM D5334	
Oxidation/Reduction (Redox)	ASTM G200	
Linear Polarization	ASTM-G59	
MIC Bacteria in Soil	MICkit 5**	

^{*}Adapted for soil

^{**}Propietary testing kit manufactured by BTI-Products

21239 FM529 Rd., Bldg F Cypress, TX 77433 Office: 291-985-9344

info@geothermusa.com http://www.geothermusa.com

REV01: Change project name from BESS to Prairie Song Reliability Project

March 5, 2025

Terracon 145 W. Walnut Street Carson, CA 90248 Attn: Janna Valdez

Thermal Resistivity Report Prairie Song Reliability Project - Acton, CA (Project No. LA245085)

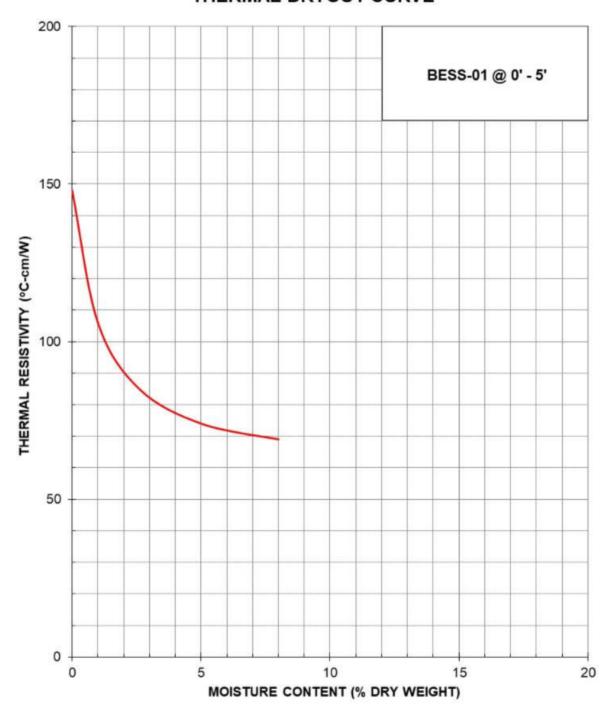
The following is the report of thermal dryout characterization tests conducted on four (4) bulk samples of native soil from the referenced project sent to our laboratory.

Thermal Resistivity Tests: The samples were tested at the 'optimum' moisture content and at 90% of the modified Proctor dry density provided by Terracon. The tests were conducted in accordance with the IEEE standard 442-2017. The results are tabulated below and the thermal dry out curves are presented in Figures 1 to 4.

Sample ID, Description, Thermal Resistivity, Moisture Content and Density

Sample ID	pple ID Depth (ft) Effort (%)	Description (Terracon)	Thermal Resistivity (°C-cm/W)		Moisture Content	Dry Density	
			Wet	Dry	(%)	(lb/ft³)	
BESS-01	0 - 5	90	Silty Sand	69	148	8	121
BESS-05	0 - 5	90	Silty Sand	65	136	8	123
BESS-13	0 - 5	90	Silty Sand	67	151	8	121
SUB-01	0 - 5	90	Silty Sand with Gravel	68	144	8	120

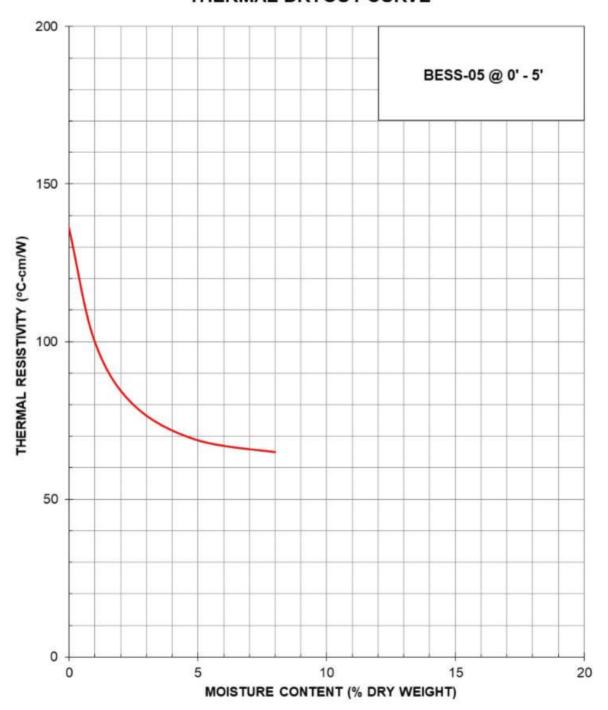
Comments: The thermal characteristic depicted in the dryout curves apply for the soils at their respective test dry density.


Please contact us if you have any questions or if we can be of further assistance.

Geotherm USA, LLC

Nimesh Patel

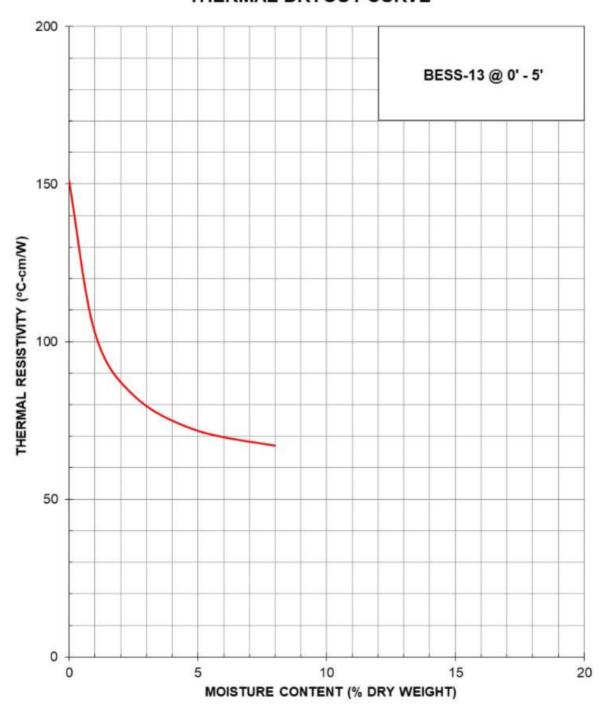
COOL SOLUTIONS FOR UNDERGROUND POWER CABLES THERMAL SURVEYS, CORRECTIVE BACKFILLS & INSTRUMENTATION



Terracon (Project No. LA245085)

Prairie Song Reliability Project – Acton, CA

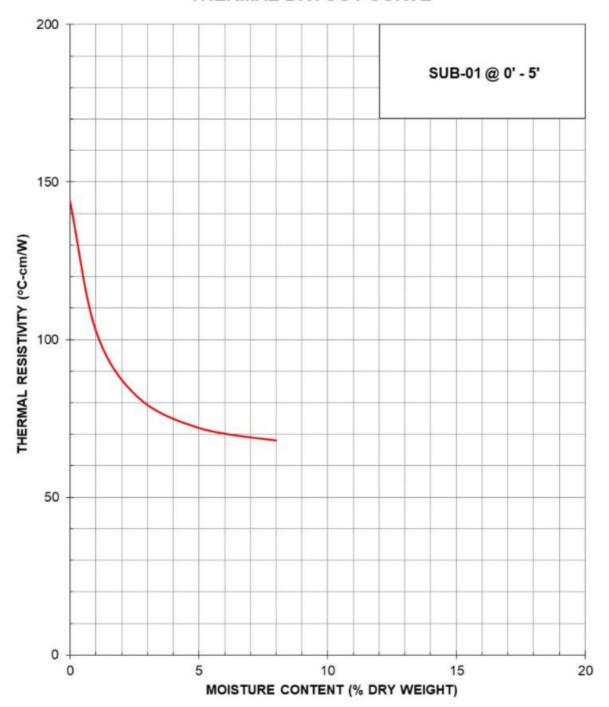
Thermal Resistivity Report



Terracon (Project No. LA245085)

Prairie Song Reliability Project – Acton, CA

Thermal Resistivity Report



Terracon (Project No. LA245085)

Prairie Song Reliability Project – Acton, CA

Thermal Resistivity Report

Terracon (Project No. LA245085)

Prairie Song Reliability Project – Acton, CA

Thermal Resistivity Report

AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t. 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL **ASTM D 1883**

Prairie Song Reliability Project Project Name:

Project No.: LA245085 Boring No.: BESS-3

Sample No.:

Depth (ft.): 0-5

Soil Description : Silty, Clayey Sand

Tested By : Date 01/23/25

Input By: _____ Checked By: ____ 01/27/25 Date Date 05/05/25

SAMPLE DESCRIPTION BEFORE SOAKING

Mold Number	D	
Blows Per Layer	8	
Wt of Wet Soil & Mold (gm)	12065.5	
Weight of Mold (gm)	7823	
Weight of Wet Soil (gm)	4243	
Mold Volume (cu.ft)	0.0750	
Container No.		
Wet Wt. Soil + Container (gm)	666.49	
Dry Wt. Soil + Container (gm)	649.74	
Wt. Container (gm)	451.71	
Moisture Content (%)	8.46	
Wet Density (pcf)	124.7	
Dry Density (pcf)	115.0	

DEFORMATION DURING SOAKING PERIOD

Sample Length (inch)

4.584

DATE	TIME	Mold No.:	D
		Dial Rdgs	Swell (in)
02/06/25	16:40	0.0760	
02/07/25	08:10	0.0790	
02/10/25	08:10	0.0800	0.0040

AFTER SOAKING

Mold Number	D	
Wt. of Wet Soil + Mold (gm)	12322	
Weight of Mold (gm)	7823	
Weight of Wet Soil (gm)	4499	
Final Sample Volume (cu.ft)	0.0751	
Container No.	Y	
Wet Wt. Soil + Container (gm)	699.01	
Dry Wt. Soil + Container (gm)	671.98	
Wt. Container (gm)	493.58	
Mosture Content (%)	15.2	
Wet Density (pcf)	132.1	
After Test Dry Density (pcf)	114.7	

SAMPLE PREPARATION

Wt of Hammer (Lbs)	10
No. of Layers	5
No. of Blows/Layer	8
Drop Height (inches)	18
Surcharge Weight (Lbs)	10
Max. Dry Density (pcf)*	135.2
Molded Relative Comp (%)	85.0
Reg'd % Moisture	8.0
No. of Trials	1
% Retained 3/4" Sieve	0.00%

*Note: Max. dry density provided by Terracon

TEST LOAD DATA

Piston Diamete	r (inches):	1.954
Penetration	Mold No.:	D
(inch)	LOAD (lb)	Stress (psi)
0.000	0	0.00
0.025	54	18.01
0.050	80	26.68
0.075	94	31.35
0.100	104	34.68
0.125	119	39.68
0.150	135	45.02
0.175	152	50.69
0.200	166	55.36
0.225	179	59.69
0.250	190	63.36
0.275	202	67.36
0.300	212	70.70
0.325	222	74.03
0.350	232	77.37
0.375	242	80.70
0.400	252	84.04
0.425	263	87.70
0.450	274	91.37
0.475	285	95.04
0.500	296	98.71

CBR @ .1":	3	
CBR @ .2":	- 4	

AP Engineering and Testing, Inc. DBE|MBE|SBE 2607 Pomona Boulevard | Pomona, CA 91768 t, 909.869.6316 | f. 909.869.6318 | www.aplaboratory.com

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL ASTM D 1883

4.584

Project Name: Prairie Song Reliability Project

Project No.: LA245085
Boring No.: BESS-3

Sample No.:

Depth (ft.): 0-5
Soil Description: Silty, Clayey Sand

 Tested By :
 SM
 Date

 Input By:
 JP
 Date

 Checked By:
 AP
 Date

Date 01/23/25
Date 01/27/25
Date 05/05/25

SAMPLE DESCRIPTION BEFORE SOAKING

Mold Number	E	
Blows Per Layer	10	
Wt of Wet Soil & Mold (gm)	12298	
Weight of Mold (gm)	7812.5	
Weight of Wet Soil (gm)	4486	
Mold Volume (cu.ft)	0.0750	
Container No.		
Wet Wt. Soil + Container (gm)	666.49	
Dry Wt. Soil + Container (gm)	649.74	
Wt. Container (gm)	451.71	
Moisture Content (%)	8.46	
Wet Density (pcf)	131.8	
Dry Density (pcf)	121.6	

DEFORMATION DURING SOAKING PERIOD Sample Length (inch)

Sample Length (inch)

DATE	TIME	Mold No.:	E
		Dial Rdgs	Swell (in)
02/06/25	16:40	0.0820	
02/07/25	08:10	0.0850	
02/10/25	08:10	0.0850	0.0030
Percent Swell/Collapse	(+/-)		0.07

AFTER SOAKING

Mold Number	E	
Wt. of Wet Soil + Mold (gm)	12456	
Weight of Mold (gm)	7813	
Weight of Wet Soil (gm)	4644	
Final Sample Volume (cu.ft)	0.0750	
Container No.	(r)	
Wet Wt. Soil + Container (gm)	641.39	
Dry Wt. Soil + Container (gm)	591.39	
Wt. Container (gm)	143.91	
Mosture Content (%)	11.2	
Wet Density (pcf)	136.4	
After Test Dry Density (pcf)	122.7	

SAMPLE PREPARATION

Wt of Hammer (Lbs)	10
No. of Layers	5
No. of Blows/Layer	10
Drop Height (inches)	18
Surcharge Weight (Lbs)	10
Max. Dry Density (pcf)*	135.2
Molded Relative Comp (%)	89.9
Req'd % Moisture	8.0
No. of Trials	1
% Retained 3/4" Sieve	0.00%

*Note: Max. dry density provided by Terracon

TEST LOAD DATA

Piston Diamete	n Diameter (inches): 1.954	
Penetration	Mold No.:	E
(inch)	LOAD (lb)	Stress (psi)
0.000	0	0.00
0.025	82	27.34
0.050	129	43.02
0.075	154	51.35
0.100	172	57.36
0.125	185	61.69
0.150	195	65.03
0.175	207	69.03
0.200	218	72.70
0.225	230	76.70
0.250	241	80.37
0.275	251	83.70
0.300	260	86.70
0.325	271	90.37
0.350	280	93.37
0.375	290	96.71
0.400	300	100.04
0.425	313	104.38
0.450	323	107.71
0.475	334	111.38
0.500	346	115.38

CBR @ .1":	6
CBR @ .2":	 5

AP Engineering and Testing, Inc. DBE | MBE | SBE 2607 Pomona Boulevard | Pomona, CA 91768 t, 909.869.6316 | f, 909.869.6318 | www.aplaboratory.com

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL ASTM D 1883

Project Name: Prairie Song Reliability Project

Project No.: LA245085
Boring No.: BESS-3

Sample No.: Depth (ft.): 0-5

Soil Description : Silty, Clayey Sand

Tested By : SM Date 01/23/25 Input By: JP Date 01/27/25 Checked By: AP Date 05/05/25

SAMPLE DESCRIPTION BEFORE SOAKING

Mold Number	F	
Blows Per Layer	25	
Wt of Wet Soil & Mold (gm)	12527	
Weight of Mold (gm)	7786	
Weight of Wet Soil (gm)	4741	
Mold Volume (cu.ft)	0.0750	
Container No.		
Wet Wt. Soil + Container (gm)	666.49	
Dry Wt. Soil + Container (gm)	649.74	
Wt. Container (gm)	451.71	
Moisture Content (%)	8.46	
Wet Density (pcf)	139.4	
Dry Density (pcf)	128.5	

DEFORMATION DURING SOAKING PERIOD Sample Length (inch)

ple Length (inch) 4.584

DATE	TIME	Mold No.:	F
		Dial Rdgs	Swell (in)
02/06/25	16:40	0.1090	
02/07/25	08:10	0.1040	
02/10/25	08:10	0.1100	0.0010
Percent Swell/Collapse	(+/-)		0.02

AFTER SOAKING

Mold Number	F	
Wt. of Wet Soil + Mold (gm)	12593	
Weight of Mold (gm)	7786	
Weight of Wet Soil (gm)	4807	
Final Sample Volume (cu.ft)	0.0750	
Container No.		
Wet Wt. Soil + Container (gm)	683.73	
Dry Wt. Soil + Container (gm)	640.42	
Wt. Container (gm)	151.00	
Mosture Content (%)	8.8	
Wet Density (pcf)	141.3	
After Test Dry Density (pcf)	129.8	

SAMPLE PREPARATION

Wt of Hammer (Lbs)	10
No. of Layers	5
No. of Blows/Layer	25
Drop Height (inches)	18
Surcharge Weight (Lbs)	10
Max. Dry Density (pcf)*	135.2
Molded Relative Comp (%)	95.0
Req'd % Moisture	8.0
No. of Trials	1
% Retained 3/4" Sieve	0.00%

% Retained 3/4" Sieve

Piston Diameter (inches)

0.00%

1 954

*Note: Max. dry density provided by Terracon

TEST LOAD DATA

Piston Diamete		1.954				
Penetration	Mold No.: F					
(inch)	LOAD (lb)	Stress (psi)				
0.000	0	0.00				
0.025	47	15.67				
0.050	103	34.35				
0.075	163	54.36				
0.100	235	78.37				
0.125	312	104.04				
0.150	385	128.39				
0.175	448	149.40				
0.200	501	167.07				
0.225	536	178.74				
0.250	551	183.74				
0.275	560	186.75				
0.300	576	192.08				
0.325	605	201.75				
0.350	640	213.42				
0.375	674	224.76				
0.400	714	238.10				
0.425	759	253.11				
0.450	807	269.11				
0.475	860	286.79				
0.500	913	304.46				

CBR @ .1":	10
CBR @ .2":	12

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL ASTM D 1883

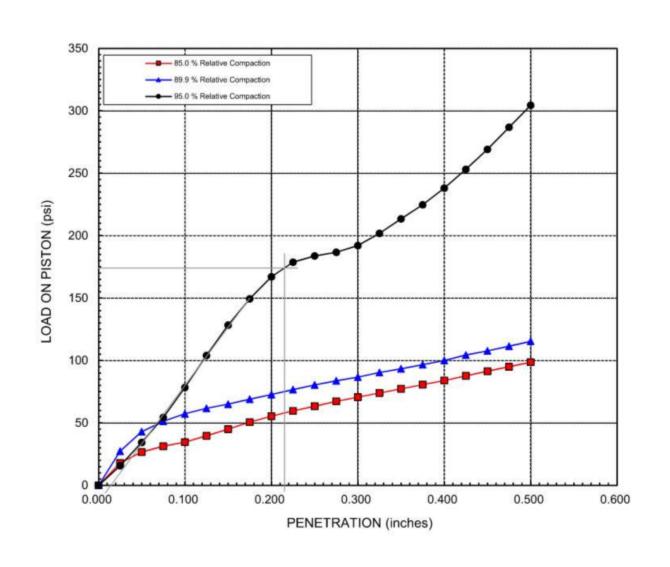
Project Name: Prairie Song Reliability Project

Traine doing Reliability Froject

Project No.: LA245085

Boring No.: BESS-3

Sample No.:


Depth (ft.): 0-5

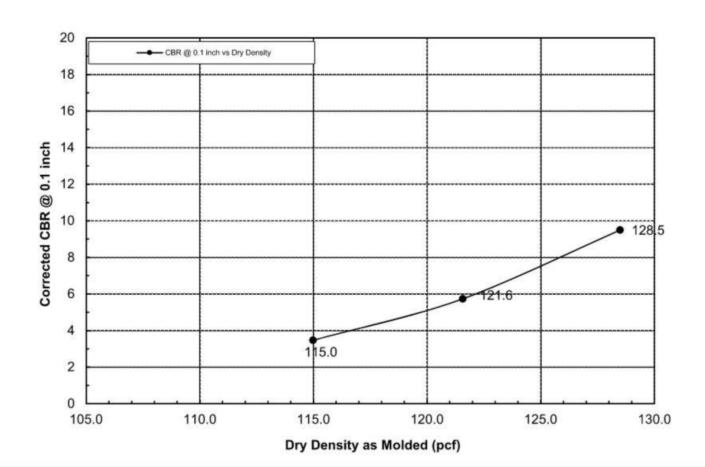
Soil Description : Silty, Clayey Sand

 Tested By :
 SM
 Date:
 01/23/25

 Data Input By:
 JP
 Date:
 01/27/25

 Checked By:
 AP
 Date:
 05/05/25

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL ASTM D 1883

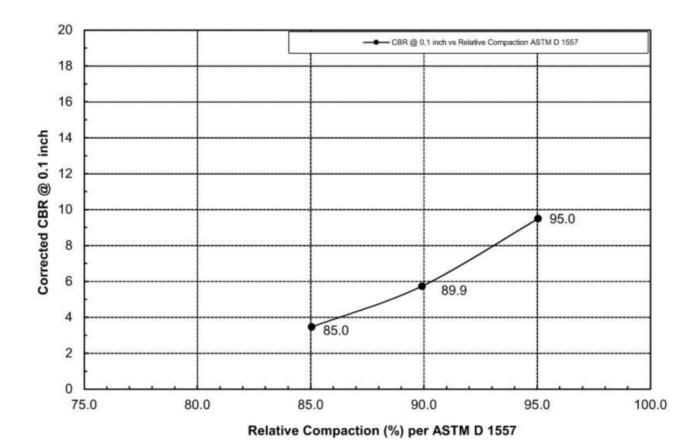

Project Name: Prairie Song Reliability Project Tested By: SM Date: 01/23/25 01/27/25 Project No.: LA245085 Data Input By: JP Date: BESS-3 AP 05/05/25 Boring No.: Checked By: Date:

Sample No.:

Depth (ft.): 0-5

Soil Description: Silty, Clayey Sand

Dry Density (pcf)	Maximum Dry Density by ASTM D 1557	Relative Compaction (%)	Blow Per Layer	CBR @0.1"	CBR @0.2
115.0	(pcf) 135.2	85.0	8	3	4
121.6	135.2	89.9	10	6	5
128.5	135.2	95.0	25	10	12

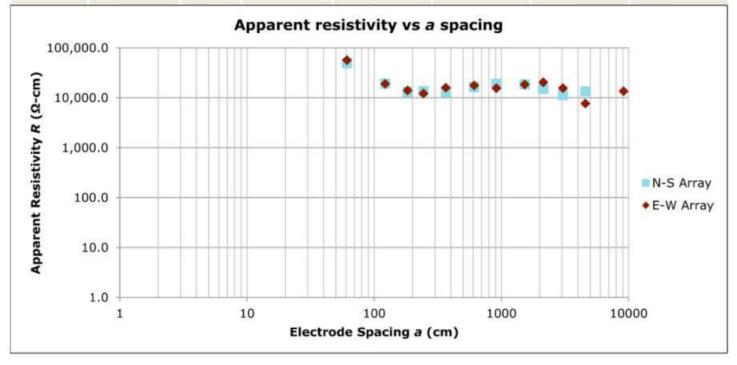

CALIFORNIA BEARING RATIO (CBR) OF LABORATORY-COMPACTED SOIL ASTM D 1883

01/23/25 Project Name: Prairie Song Reliability Project Tested By: SM Date: JP 01/27/25 Project No.: LA245085 Data Input By: Date: BESS-3 AP Date: 05/05/25 Boring No.: Checked By:

Sample No.: -Depth (ft.): 0-5

Soil Description: Silty, Clayey Sand

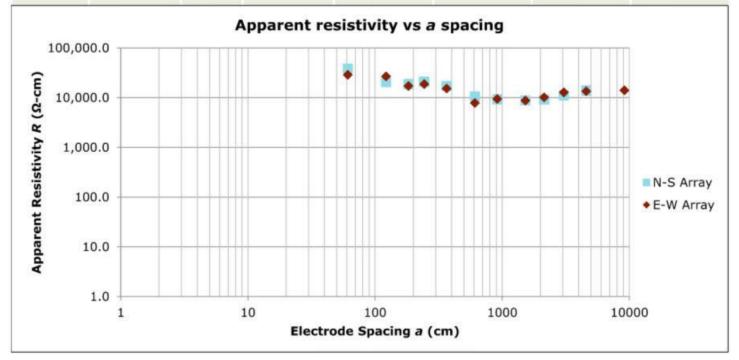
Dry Density (pcf)	Maximum Dry Density by ASTM D 1557 (pcf)	Relative Compaction (%)	Blow Per Layer	CBR @0.1"	CBR @0.2"
115.0	135.2	85.0	8	3	4
121.6	135.2	89.9	10	6	5
128.5	135.2	95.0	25	10	12



Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085

ER-1 (34.4831, -118.1471) Array Loc. MiniSting Instrument Weather Sunny Semi-Compacted Soil Serial # SZ107129 **Ground Cond.** August 28, 2025 AL/OW Cal. Check **Tested By** Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) **Test Date** December 12, 2024 Method Notes & Conflicts Site Limitation on the N-S Array due to highway

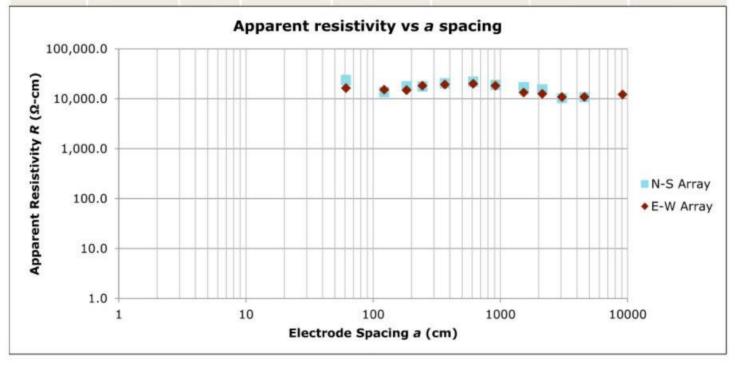
(centimeters)						
(certainecers)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity p	Measured Resistance R	Apparent Resistivity p
			Ω	(Ω-cm)	Ω	(Ω-cm)
61	2	5	128	49470	147	56960
122	2	3	25	19380	25	19010
183	2	5	11	13190	12	14070
244	2	5	8.9	13650	8.0	12270
366	2	5	5.7	13220	6.9	15990
610	2	5	4.3	16380	4.6	17760
914	3	8	3.3	19230	2.7	15570
1524	3	8	1.9	18610	1.9	18470
2134	3	8	1.1	15030	1.5	20480
3048	6	15	0.59	11310	0.82	15660
4572	6	15	0.47	13490	0.27	7680
9144	6	15			0.24	13550
	122 183 244 366 610 914 1524 2134 3048 4572	122 2 183 2 244 2 366 2 610 2 914 3 1524 3 2134 3 3048 6 4572 6	122 2 3 183 2 5 244 2 5 366 2 5 610 2 5 914 3 8 1524 3 8 2134 3 8 3048 6 15 4572 6 15	61 2 5 128 122 2 3 25 183 2 5 11 244 2 5 8.9 366 2 5 5.7 610 2 5 4.3 914 3 8 3.3 1524 3 8 1.9 2134 3 8 1.1 3048 6 15 0.59 4572 6 15 0.47	61 2 5 128 49470 122 2 3 25 19380 183 2 5 11 13190 244 2 5 8.9 13650 366 2 5 5.7 13220 610 2 5 4.3 16380 914 3 8 3.3 19230 1524 3 8 1.9 18610 2134 3 8 1.1 15030 3048 6 15 0.59 11310 4572 6 15 0.47 13490	61 2 5 128 49470 147 122 2 3 25 19380 25 183 2 5 11 13190 12 244 2 5 8.9 13650 8.0 366 2 5 5.7 13220 6.9 610 2 5 4.3 16380 4.6 914 3 8 3.3 19230 2.7 1524 3 8 1.9 18610 1.9 2134 3 8 1.1 15030 1.5 3048 6 15 0.59 11310 0.82 4572 6 15 0.47 13490 0.27



Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085

ER-2 (34.4834, -118.1426) Array Loc. Instrument MiniSting Weather Sunny SZ107129 Loose Soild Serial # **Ground Cond.** AL/OW Cal. Check August 28, 2025 **Tested By** December 11, 2024 Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) **Test Date** Method Notes & Conflicts Site Limitation on the N-S Array due to highway

Electrod	le Spacing a	Electro	de Depth b	N-S	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity p	Measured Resistance R	Apparent Resistivity p
				Ω	(Ω-cm)	Ω	(Ω-cm)
2	61	2	5	100	38710	75	28990
4	122	2	5	27	20570	35	26890
6	183	2	5	16	18640	15	17220
8	244	2	5	14	21220	12	18870
12	366	2	5	7.5	17140	6.6	15290
20	610	2	5	2.8	10590	2.0	7840
30	914	3	8	1.6	9240	1.6	9460
50	1524	3	8	0.92	8810	0.92	8790
70	2134	3	8	0.68	9130	0.76	10150
100	3048	6	15	0.59	11240	0.67	12770
150	4572	6	15	0.48	13830	0.47	13450
300	9144	6	15			0.25	14090

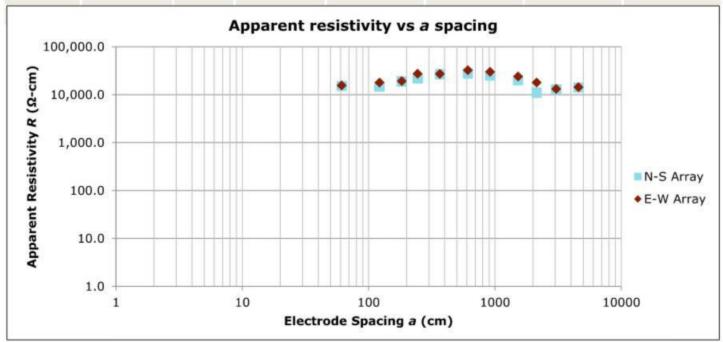


Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085

ER-3 (34.4854, -118.1390) Array Loc. MiniSting Instrument Weather Sunny Semi-Compacted Soil Serial # SZ107129 **Ground Cond.** August 28, 2025 AL/OW Cal. Check **Tested By** Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) **Test Date** December 11, 2024 Method Notes & Conflicts Site Limitation on the N-S Array due to roads

Electrod	e Spacing a	Electro	de Depth b	N-S	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity p	Measured Resistance R	Apparent Resistivity p
				Ω	(Ω-cm)	Ω	(Ω-cm)
2	61	2	5	61	23530	43	16500
4	122	2	3	18	13790	20	15330
6	183	2	5	16	17970	13	14910
8	244	2	5	12	17780	12	18440
12	366	2	5	8.9	20410	8.4	19310
20	610	2	5	5.8	22340	5.2	20030
30	914	3	8	3.3	18980	3.2	18310
50	1524	3	8	1.8	16880	1.4	13400
70	2134	3	8	1.2	15670	0.94	12640
100	3048	6	15	0.54	10330	0.57	10840
150	4572	6	15	0.38	10800	0.38	10990
300	9144	6	15			0.21	12250

Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085



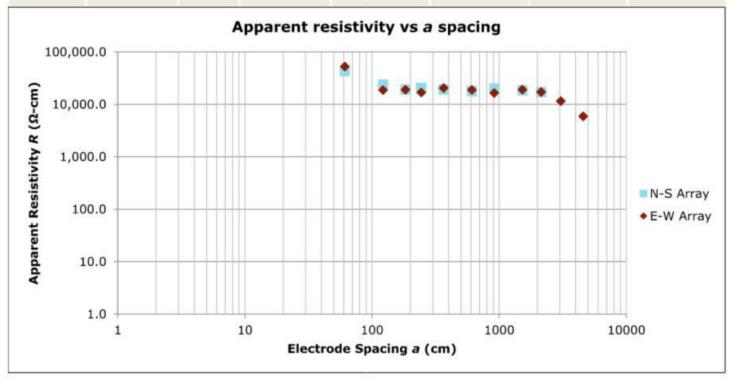
ER-4 (34.4867, -118.1370) Array Loc. Instrument MiniSting Weather Sunny SZ107129 Serial # **Ground Cond.** Loose Soild AL/OW Cal. Check August 28, 2025 **Tested By** Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) December 11, 2024 **Test Date** Method Notes & Conflicts Site Limitation on the both arrays due to a sloped terrain on the south side and thick vegetation on east side

Apparent resistivity ho is calculated as :

$$\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$$

Electrod	le Spacing a	Electro	de Depth b	N-S	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity p	Measured Resistance R	Apparent Resistivity p
				Ω	(Ω-cm)	Ω	(Ω-cm)
2	61	2	5	39	15170	40	15640
4	122	2	5	19	14670	23	18010
6	183	2	5	16	18860	17	19160
8	244	2	5	14	21710	18	27450
12	366	2	5	12	26570	12	27210
20	610	2	5	7.3	27920	8.5	32490
30	914	3	8	4.4	25050	5.2	29940
50	1524	3	8	2.1	19900	2.5	24110
70	2134	3	8	0.82	11030	1.34	17990
100	3048	6	15	0.67	12800	0.69	13200
150	4572	6	15	0.49	14090	0.50	14410
300	9144	6	15				

Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085

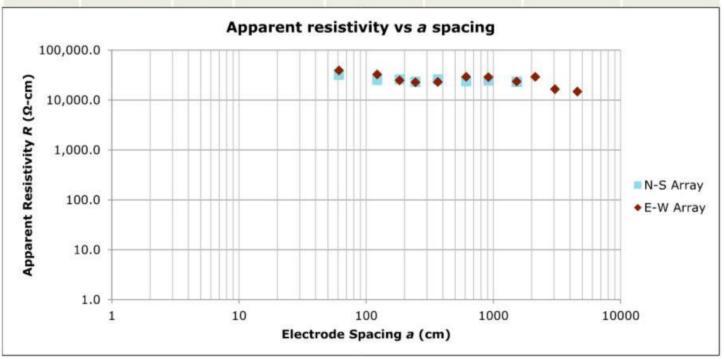


ER-5 (34.4834, -118.1383) Array Loc. Instrument MiniSting Weather Sunny SZ107129 Burrowed Ground Serial # Ground Cond. AL/OW Cal. Check August 28, 2025 **Tested By** December 12, 2024 Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) **Test Date** Method Notes & Conflicts Site Limitation on the N-S Array due to road in the north and wash in the south

Apparent resistivity ρ is calculated as : $\rho = \frac{4}{1 + \frac{2a}{\sqrt{2a}}}$

 $\rho = \frac{4\pi aR}{1 + \frac{2a}{\sqrt{a^2 + 4b^2}} - \frac{a}{\sqrt{a^2 + b^2}}}$

Electrod	le Spacing a	Electro	de Depth b	N-S	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity p	Measured Resistance R	Apparent Resistivity p
				Ω	(Ω-cm)	Ω	(Ω-cm)
2	61	2	5	111	43120	136	52580
4	122	2	5	31	23790	24	18750
6	183	2	5	17	19090	17	19050
8	244	2	5	14	20870	11	16920
12	366	2	5	8.4	19310	8.9	20580
20	610	2	5	4.7	17990	4.9	18930
30	914	3	8	3.5	20250	2.9	16490
50	1524	3	8	2.0	18810	2.0	19120
70	2134	3	8	1.3	17080	1.3	17280
100	3048	6	15			0.60	11510
150	4572	6	15			0.21	5930



Prairie Song Reliability Project | Acton, California Terracon Project No. LA245085

ER-6 (34.4802, -118.1332) Array Loc. MiniSting Instrument Weather Sunny Semi-Compacted Soil Serial # SZ107129 **Ground Cond.** AL/OW August 28, 2025 **Tested By** Cal. Check Wenner 4-pin (ASTM G57-06 (2012); IEEE 81-2012) **Test Date** December 13, 2024 Method Notes & Conflicts Site Limitation on the N-S Array due to road in the north and descending slope in the south

Electrod	e Spacing a	Electro	de Depth b	N-S	Test	E-W	Test
(feet)	(centimeters)	(inches)	(centimeters)	Measured Resistance R	Apparent Resistivity ρ	Measured Resistance R	Apparent Resistivity p
				Ω	(Ω-cm)	Ω	(Ω-cm)
2	61	2	5	83	32320	101	39120
4	122	2	3	33	25240	43	32640
6	183	2	5	23	26140	22	24870
8	244	2	5	15	22980	15	22650
12	366	2	5	11	25650	10	22950
20	610	2	5	6.1	23520	7.6	29170
30	914	3	8	4.3	24580	5.0	28640
50	1524	3	8	2.4	22960	2.5	23470
70	2134	3	8			2.2	29260
100	3048	6	15			0.86	16480
150	4572	6	15			0.51	14750

Supporting Information

Contents:

Liquefaction Analyses Shaft Analyses General Notes Unified Soil Classification System

Note: All attachments are one page unless noted above.

LIQUEFACTION ANALYSIS SUMMARY

Copyright by CivilTech Software www.civiltechsoftware.com

Font: Courier New, Regular, Size 8 is recommended for this report. Licensed to , 2/26/2025 3:51:32 PM

Input File Name: C:\Users\sdhital\OneDrive - Terracon Consultants
Inc\Desktop\New folder\LA245085 Prairie Song Reliability - TL-2.liq

Title: LA245085

Subtitle: Prairie Song Reliability Project

Surface Elev.=3011 Hole No.=TL-2

Depth of Hole= 51.50 ft

Water Table during Earthquake= 100.00 ft

Water Table during In-Situ Testing= 100.00 ft

Max. Acceleration= 0.87 g Earthquake Magnitude= 7.76

Input Data:

Surface Elev.=3011

Hole No.=TL-2

Depth of Hole=51.50 ft

Water Table during Earthquake= 100.00 ft

Water Table during In-Situ Testing= 100.00 ft

Max. Acceleration=0.87 g

Earthquake Magnitude=7.76

No-Liquefiable Soils: Based on Analysis

- 1. SPT or BPT Calculation.
- 2. Settlement Analysis Method: Ishihara / Yoshimine
- 3. Fines Correction for Liquefaction: Idriss/Seed
- 4. Fine Correction for Settlement: During Liquefaction*
- 5. Settlement Calculation in: All zones*
- 6. Hammer Energy Ratio,

Ce = 1.42

7. Borehole Diameter,

Cb= 1.15

8. Sampling Method,

Cs= 1.2

 User request factor of safety (apply to CSR) , User= 1.3 Plot two CSR (fs1=1, fs2=User)

10. Use Curve Smoothing: Yes*

^{*} Recommended Options

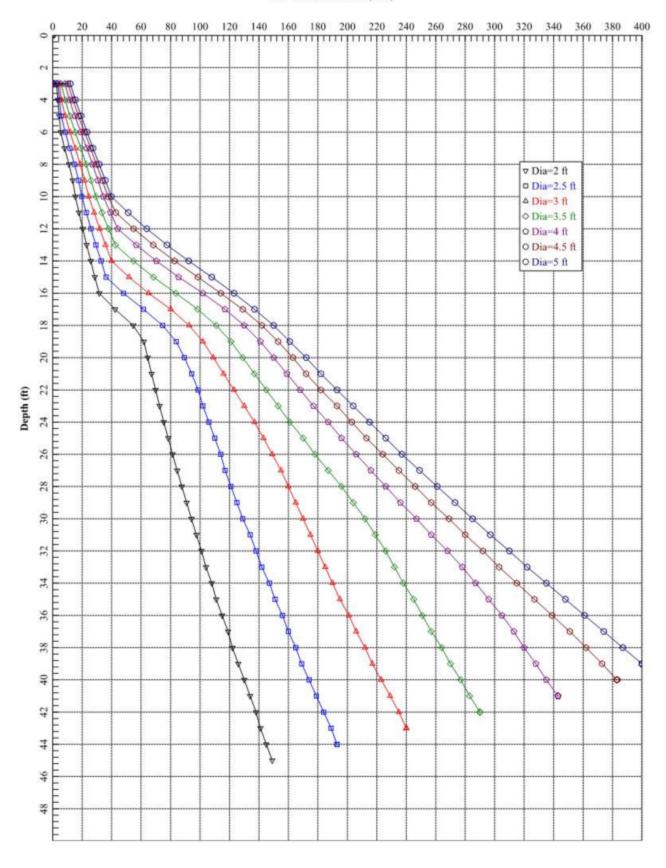
In-Situ	Test Da	ata:		
Depth ft	SPT	gamma pcf	Fines %	
2.50	8.00	120.00	24.00	
5.00	12.00	120.00	24.00	
7.50	11.00	120.00	10.00	
10.00	15.00	115.00	10.00	
15.00	20.00	110.00	10.00	
20.00	40.00	110.00	10.00	
25.00	28.00	120.00	10.00	
30.00	41.00	120.00	10.00	
35.00	46.00	120.00	10.00	
40.00	33.00	120.00	10.00	
45.00	37.00	120.00	10.00	
50.00	27.00	120.00	10.00	

Output Results:

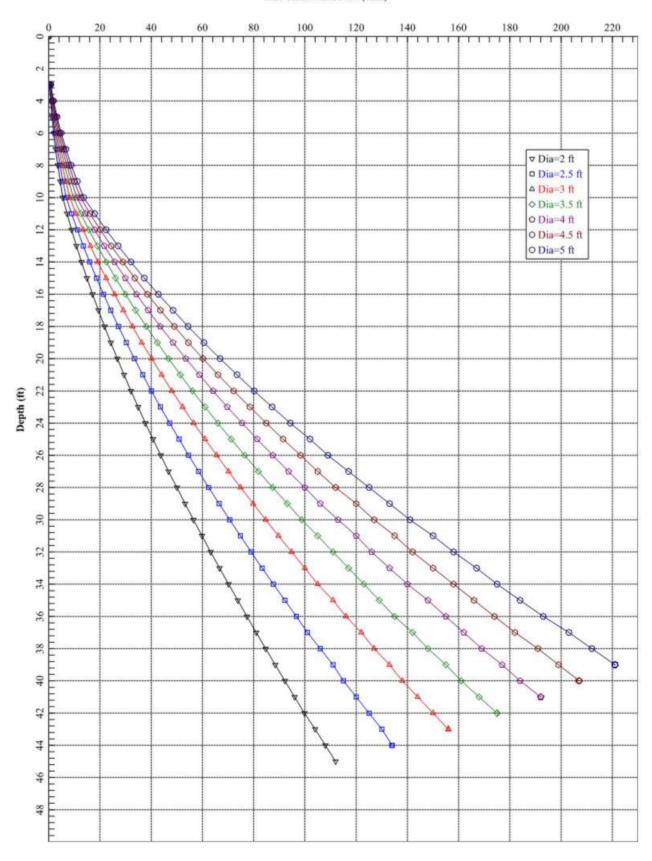
Settlement of Saturated Sands=0.00 in.
Settlement of Unsaturated Sands=1.31 in.
Total Settlement of Saturated and Unsaturated Sands=1.31 in.
Differential Settlement=0.655 to 0.865 in.

Depth ft	CRRm	CSRfs	F.S.	S_sat. in.	S_dry in.	S_all in.
2.50	0.28	0.56	5.00	0.00	1.31	1.31
3.00	0.33	0.56	5.00	0.00	1.30	1.30
3.50	1.83	0.56	5.00	0.00	1.29	1.29
4.00	1.83	0.56	5.00	0.00	1.26	1.26
4.50	1.83	0.56	5.00	0.00	1.25	1.25
5.00	1.83	0.56	5.00	0.00	1.24	1.24
5.50	1.83	0.56	5.00	0.00	1.24	1.24
6.00	1.83	0.56	5.00	0.00	1.23	1.23
6.50	1.83	0.56	5.00	0.00	1.22	1.22
7.00	0.34	0.56	5.00	0.00	1.18	1.18
7.50	0.28	0.56	5.00	0.00	1.10	1.10
8.00	0.30	0.56	5.00	0.00	1.01	1.01
8.50	1.83	0.56	5.00	0.00	0.93	0.93
9.00	1.83	0.56	5.00	0.00	0.86	0.86
9.50	1.83	0.55	5.00	0.00	0.80	0.80
10.00	1.83	0.55	5.00	0.00	0.78	0.78
10.50	1.83	0.55	5.00	0.00	0.77	0.77
11.00	1.83	0.55	5.00	0.00	0.76	0.76
11.50	1.83	0.55	5.00	0.00	0.75	0.75
12.00	1.83	0.55	5.00	0.00	0.74	0.74
12.50	1.83	0.55	5.00	0.00	0.73	0.73
13.00	1.83	0.55	5.00	0.00	0.71	0.71
13.50	1.83	0.55	5.00	0.00	0.70	0.70

14.00	1.83	0.55	5.00	0.00	0.69	0.69
14.50	1.83	0.55	5.00	0.00	0.67	0.67
15.00	1.83	0.55	5.00	0.00	0.66	0.66
15.50	1.83	0.55	5.00	0.00	0.65	0.65
16.00	1.83	0.55	5.00	0.00	0.64	0.64
16.50	1.83	0.55	5.00	0.00	0.63	0.63
17.00	1.83	0.54	5.00	0.00	0.62	0.62
17.50	1.83	0.54	5.00	0.00	0.61	0.61
18.00	1.83	0.54	5.00	0.00	0.60	0.60
18.50	1.83	0.54	5.00	0.00	0.59	0.59
19.00	1.83	0.54	5.00	0.00	0.58	0.58
19.50	1.83	0.54	5.00	0.00	0.57	0.57
20.00	1.83	0.54	5.00	0.00	0.56	0.56
20.50	1.83	0.54	5.00	0.00	0.55	0.55
21.00	1.83	0.54	5.00	0.00	0.54	0.54
21.50	1.83	0.54	5.00	0.00	0.54	0.54
22.00	1.83	0.54	5.00	0.00	0.53	0.53
22.50	1.83	0.54	5.00	0.00	0.53	0.53
23.00	1.83	0.54	5.00	0.00	0.52	0.52
23.50	1.83	0.54	5.00	0.00	0.51	0.51
24.00	1.83	0.54	5.00	0.00	0.51	0.51
24.50	1.83	0.54	5.00	0.00	0.50	0.50
25.00	1.83	0.53	5.00	0.00	0.49	0.49
25.50	1.83	0.53	5.00	0.00	0.48	0.48
26.00	1.83	0.53	5.00	0.00	0.48	0.48
26.50	1.83	0.53	5.00	0.00	0.47	0.47
27.00	1.83	0.53	5.00	0.00	0.46	0.46
27.50	1.83	0.53	5.00	0.00	0.45	0.45
28.00	1.83	0.53	5.00	0.00	0.44	0.44
28.50	1.84	0.53	5.00	0.00	0.44	0.44
29.00	1.83	0.53	5.00	0.00	0.43	0.43
29.50	1.83	0.53	5.00	0.00	0.42	0.42
30.00	1.82	0.53	5.00	0.00	0.42	0.42
30.50	1.82	0.53	5.00	0.00	0.41	0.41
31.00	1.81	0.52	5.00	0.00	0.40	0.40
31.50	1.81	0.52	5.00	0.00	0.39	0.39
32.00	1.80	0.52	5.00	0.00	0.38	0.38
32.50	1.80	0.52	5.00	0.00	0.38	0.38
33.00	1.79	0.51	5.00	0.00	0.37	0.37
33.50	1.79	0.51	5.00	0.00	0.36	0.36
34.00	1.78	0.51	5.00	0.00	0.35	0.35
34.50	1.78	0.51	5.00	0.00	0.35	0.35
35.00	1.77	0.50	5.00	0.00	0.34	0.34
35.50	1.77	0.50	5.00	0.00	0.33	0.33
36.00	1.76	0.50	5.00	0.00	0.32	0.32
36.50	1.76	0.50	5.00	0.00	0.31	0.31
37.00	1.75	0.50	5.00	0.00	0.30	0.30
37.50	1.75	0.49	5.00	0.00	0.29	0.29
38.00	1.74	0.49	5.00	0.00	0.28	0.28
38.50	1.74	0.49	5.00	0.00	0.28	0.27
30.30	1.74	0.49	3.00	0.00	0.27	0.27


```
39.00
       1.73
               0.49
                       5.00
                               0.00
                                       0.26
                                              0.26
39.50
       1.73
               0.48
                       5.00
                               0.00
                                       0.25
                                              0.25
40.00
       1.72
               0.48
                       5.00
                               0.00
                                       0.23
                                              0.23
40.50
       1.72
               0.48
                       5.00
                               0.00
                                       0.22
                                              0.22
41.00
       1.72
               0.48
                       5.00
                               0.00
                                       0.21
                                              0.21
41.50
       1.71
               0.47
                       5.00
                               0.00
                                      0.19
                                              0.19
42.00
       1.71
               0.47
                       5.00
                               0.00
                                       0.18
                                              0.18
42.50
       1.70
               0.47
                       5.00
                               0.00
                                       0.17
                                              0.17
43.00
       1.70
               0.47
                                      0.17
                       5.00
                               0.00
                                              0.17
43.50
       1.69
               0.47
                       5.00
                               0.00
                                      0.16
                                              0.16
44.00
       1.69
               0.46
                       5.00
                               0.00
                                      0.15
                                              0.15
44.50
       1.68
               0.46
                       5.00
                               0.00
                                      0.15
                                              0.15
45.00
       1.68
               0.46
                       5.00
                               0.00
                                      0.14
                                              0.14
45.50
       1.68
               0.46
                       5.00
                               0.00
                                      0.13
                                              0.13
46.00
       1.67
               0.45
                       5.00
                               0.00
                                      0.12
                                              0.12
46.50
       1.67
               0.45
                       5.00
                               0.00
                                      0.12
                                              0.12
47.00
               0.45
       1.66
                       5.00
                               0.00
                                      0.11
                                              0.11
47.50
      1.66
               0.45
                       5.00
                               0.00
                                      0.10
                                              0.10
48.00
      1.65
               0.44
                       5.00
                               0.00
                                      0.09
                                              0.09
48.50
       1.65
               0.44
                       5.00
                               0.00
                                      0.08
                                              0.08
49.00
      1.65
               0.44
                       5.00
                               0.00
                                      0.07
                                              0.07
49.50
       1.64
               0.44
                       5.00
                               0.00
                                      0.06
                                              0.06
50.00
      1.64
               0.44
                       5.00
                               0.00
                                      0.05
                                              0.05
50.50
       1.63
               0.43
                       5.00
                               0.00
                                      0.03
                                              0.03
51.00
               0.43
                       5.00
                               0.00
       1.63
                                      0.02
                                              0.02
51.50
       1.63
               0.43
                       5.00
                               0.00
                                      0.00
                                              0.00
```

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.


```
1 atm (atmosphere) = 1 tsf (ton/ft2)
                        Cyclic resistance ratio from soils
       CRRm
       CSRsf
                        Cyclic stress ratio induced by a given earthquake (with user
request factor of safety)
       F.S.
                        Factor of Safety against liquefaction, F.S.=CRRm/CSRsf
                        Settlement from saturated sands
       S sat
       S_dry
                        Settlement from Unsaturated Sands
       S_all
                        Total Settlement from Saturated and Unsaturated Sands
       NoLiq
                        No-Liquefy Soils
```

^{*} F.S.<1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Allowable Downward Capacity Total Resistance/F.S. (tons)

Allowable Skin Friction Side Resistance/F.S. (tons)

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

Auger Shelby Tube Split Spool Rock Macro Core Dames & Mo Ring Sample Recovery Modified Dames & Mo Ring Sample Modified California Ring Sample	logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term	HELD TESTS (PLD) (PLD) (ONA) (MOH	Hand Penetrometer Torvane Standard Penetration Test (blows per foot) N value Photo-Ionization Detector Organic Vapor Analyzer) Weight of Hammer
---	--	-----------------------------------	---

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels, sands and silts.			CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance				
TERMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	
	Very Loose	0-3	0-6	Very Soft	less than 500	0 - 1	< 3	
NGTH	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2-4	3-4	
R	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5-9	
STI	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18	
	Very Dense	> 50	≥ 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42	
				Hard	> 8,000	> 30	> 42	

RELATIVE PROPORTIONS OF SAND AND GRAVEL

GRAIN SIZE TERMINOLOGY

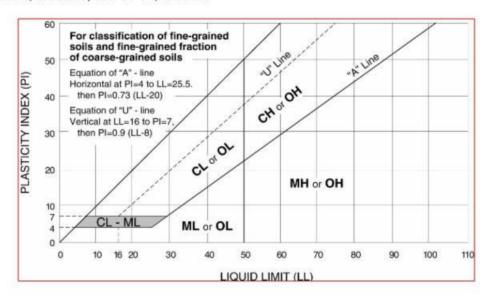
PLASTICITY DESCRIPTION

Descriptive Term(s)	Percent of	Major Component	Particle Size
of other constituents	Dry Weight	of Sample	
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s)	Percent of	<u>Term</u>	Plasticity Index	
of other constituents	Dry Weight	Non-plastic	0	
Trace	< 5	Low	1 - 10	
With	5 • 12	Medium	11 - 30	
Modifier	> 12	High	> 30	

Unified Soil Classification System


Criteria for Assigning Group Symbols and Group Names Using					Soil Classification	
Laboratory Tests A				Group Symbol	Group Name B	
	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels: Less than 5% fines C	Cu≥4 and 1≤Cc≤3 E	GW	Well-graded gravel F	
			Cu<4 and/or [Cc<1 or Cc>3.0] E	GP	Poorly graded gravel	
		Gravels with Fines: More than 12% fines	Fines classify as ML or MH	GM	Silty gravel F, G, H	
Coarse-Grained Soils:			Fines classify as CL or CH	GC	Clayey gravel F, G, H	
fore than 50% retained on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands: Less than 5% fines	Cu≥6 and 1≤Cc≤3 E	SW	Well-graded sand I	
			Cu<6 and/or [Cc<1 or Cc>3.0]	SP	Poorly graded sand 1	
		Sands with Fines: More than 12% fines ⁰	Fines classify as ML or MH	SM	Silty sand G, H, I	
			Fines classify as CL or CH	sc	Clayey sand G, H, I	
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots above "A" line 3	CL	Lean clay K, L, M	
			PI < 4 or plots below "A" line 3	ML	Silt K, L, M	
		Organic:	$\frac{LL \text{ oven dried}}{LL \text{ not dried}} < 0.75$	OL	Organic clay K, L, M, N	
Fine-Grained Soils:			LL not dried < 0.75		Organic silt K, L, M, O	
50% or more passes the No. 200 sieve	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line	CH	Fat clay K, L, M	
			PI plots below "A" line	MH	Elastic silt K, L, M	
			LL oven dried		Organic clay K, L, M, P	
		Organic:	$\frac{LL \ oven \ dried}{LL \ not \ dried} < 0.75$	ОН	Organic silt K, L, M, Q	
Highly organic soils:	Primarily organic matter, dark in color, and organic odor				Peat	

- A Based on the material passing the 3-inch (75-mm) sieve.
- If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- Gravels with 5 to 12% fines require dual symbols: GW-GM wellgraded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- D Sands with 5 to 12% fines require dual symbols: SW-SM wellgraded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

E Cu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{00}}$

- If soil contains ≥ 15% sand, add "with sand" to group name.
- If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- If fines are organic, add "with organic fines" to group name.
- If soil contains ≥ 15% gravel, add "with gravel" to group name. ¹ If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or
- "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- PI ≥ 4 and plots on or above "A" line.
- OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

Attachment G: Soil Map

Custom Soil Resource Report for Angeles National Forest Area, California, and Antelope Valley Area, California

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other agencies including the Agricultural Experiment Stations, and local participants

Natural Resources Conservation Service

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
low Soil Surveys Are Made	5
Soil Map	
Soil Map (9
Legend	10
Map Unit Legend (12
Map Unit Descriptions (13
Angeles National Forest Area, California	15
89—Pismo-Trigo, dry-Exchequer, dry families complex, 30 to 70	
percent slopes	15
Antelope Valley Area, California	
AmF2—Amargosa rocky coarse sandy loam, 9 to 55 percent slopes,	
eroded	18
GsC—Greenfield sandy loam, 2 to 9 percent slopes	19
GsD2—Greenfield sandy loam, 9 to 15 percent slopes, eroded	20
HbA—Hanford coarse sandy loam, 0 to 2 percent slopes	21
HbC—Hanford coarse sandy loam, 2 to 9 percent slopes	23
HbD—Hanford coarse sandy loam, 9 to 15 percent slopes	24
HcC—Hanford sandy loam, 2 to 9 percent slopes	25
HdC—Hanford gravelly sandy loam, 2 to 9 percent slopes	26
LdF—Las Posas-Toomes rocky loams, 30 to 50 percent slopes	28
Rg—Riverwash	30
Sa—Sandy alluvial land	31
TsF—Terrace escarpments	32
VsE—Vista coarse sandy loam, 15 to 30 percent slopes	33
VsE2—Vista coarse sandy loam, 15 to 30 percent slopes, eroded	34
VsF—Vista coarse sandy loam, 30 to 50 percent slopes	35
VsF2—Vista coarse sandy loam, 30 to 50 percent slopes, eroded	36
WgC—Wyman gravelly loam, 2 to 9 percent slopes	37
WgD—Wyman gravelly loam, 9 to 15 percent slopes	
	41

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

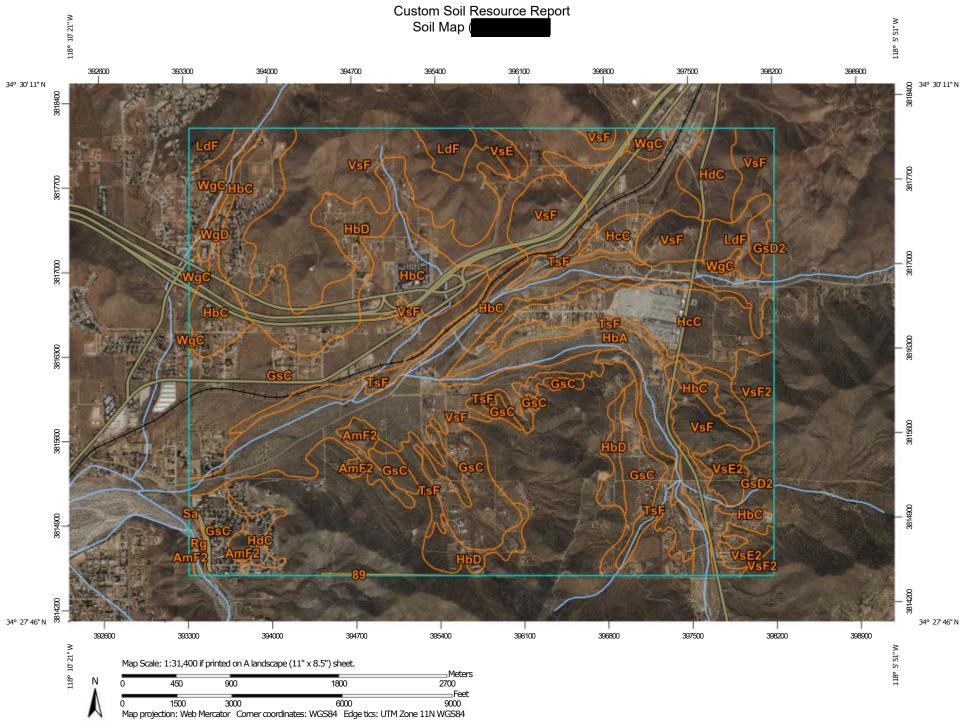
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

O B

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

^

Closed Depression

~

Gravel Pit

0.0

Gravelly Spot

0

Landfill

٨.

Lava Flow

Marsh or swamp

@

Mine or Quarry

0

Miscellaneous Water
Perennial Water

0

Rock Outcrop

1

Saline Spot

0 0

Sandy Spot

-

Severely Eroded Spot

Sinkhole

3>

Slide or Slip

Ø

Sodic Spot

8

Spoil Area Stony Spot

00

Very Stony Spot

Ø

Wet Spot Other

Δ

Special Line Features

Water Features

_

Streams and Canals

Transportation

Γransp +++

Rails

~

Interstate Highways

__

US Routes

~

Major Roads

2

Local Roads

Background

The same

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Angeles National Forest Area, California

Survey Area Data: Version 18, Sep 3, 2024

Soil Survey Area: Antelope Valley Area, California Survey Area Data: Version 17, Aug 30, 2024

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 14, 2022—Apr 23, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend (

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
89	Pismo-Trigo, dry-Exchequer, dry families complex, 30 to 70 percent slopes	2.4	0.1%	
Subtotals for Soil Survey Area		2.4	0.1%	
Totals for Area of Interest		4,475.1	100.0%	

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AmF2	Amargosa rocky coarse sandy loam, 9 to 55 percent slopes, eroded	33.0	0.7%
GsC	Greenfield sandy loam, 2 to 9 percent slopes	590.8	13.2%
GsD2	Greenfield sandy loam, 9 to 15 percent slopes, eroded	45.2	1.0%
HbA	Hanford coarse sandy loam, 0 to 2 percent slopes	148.4	3.3%
HbC	Hanford coarse sandy loam, 2 to 9 percent slopes	864.2	19.3%
HbD	Hanford coarse sandy loam, 9 to 15 percent slopes	500.8	11.2%
HcC	Hanford sandy loam, 2 to 9 percent slopes	228.2	5.1%
HdC	Hanford gravelly sandy loam, 2 to 9 percent slopes	94.1	2.1%
LdF	Las Posas-Toomes rocky loams, 30 to 50 percent slopes	101.6	2.3%
Rg	Riverwash	11.6	0.3%
Sa	Sandy alluvial land	0.4	0.0%
TsF	Terrace escarpments	306.7	6.9%
VsE	Vista coarse sandy loam, 15 to 30 percent slopes	21.3	0.5%
VsE2	Vista coarse sandy loam, 15 to 30 percent slopes, eroded	86.3	1.9%
VsF	Vista coarse sandy loam, 30 to 50 percent slopes	1,285.1	28.7%
VsF2	Vista coarse sandy loam, 30 to 50 percent slopes, eroded	58.6	1.3%
WgC	Wyman gravelly loam, 2 to 9 percent slopes	81.7	1.8%
WgD	Wyman gravelly loam, 9 to 15 percent slopes	14.2	0.3%
Subtotals for Soil Survey A	rea	4,472.4	99.9%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
Totals for Area of Interest		4,475.1	100.0%	

Map Unit Descriptions (

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Angeles National Forest Area, California

89—Pismo-Trigo, dry-Exchequer, dry families complex, 30 to 70 percent slopes

Map Unit Setting

National map unit symbol: hm8h Elevation: 2,800 to 5,500 feet

Mean annual precipitation: 10 to 20 inches Mean annual air temperature: 55 to 64 degrees F

Frost-free period: 150 to 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Pismo family and similar soils: 40 percent Trigo family, dry, and similar soils: 30 percent Exchequer family, dry, and similar soils: 15 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pismo Family

Setting

Landform: Mountains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Mountainflank

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from anorthosite

Typical profile

H1 - 0 to 9 inches: gravelly loamy sand H2 - 9 to 13 inches: weathered bedrock

Properties and qualities

Slope: 30 to 70 percent

Depth to restrictive feature: 4 to 20 inches to paralithic bedrock

Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 0.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F019XG915CA - Sandy Hills <30"ppt

Description of Trigo Family, Dry

Setting

Landform: Mountains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Mountainflank

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from granodiorite

Typical profile

H1 - 0 to 9 inches: sandy loam H2 - 9 to 20 inches: sandy loam

H3 - 20 to 24 inches: weathered bedrock

Properties and qualities

Slope: 30 to 70 percent

Depth to restrictive feature: 9 to 20 inches to paralithic bedrock

Drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: F019XG913CA - Loamy Hills <30"ppt

Hydric soil rating: No

Description of Exchequer Family, Dry

Setting

Landform: Mountains

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Mountainflank

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granodiorite

Typical profile

H1 - 0 to 10 inches: gravelly sandy loam H2 - 10 to 14 inches: unweathered bedrock

Properties and qualities

Slope: 30 to 70 percent

Depth to restrictive feature: 5 to 19 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F019XG913CA - Loamy Hills <30"ppt

Hydric soil rating: No

Minor Components

Vista family

Percent of map unit: 4 percent

Chilao family

Percent of map unit: 4 percent

Hanford family

Percent of map unit: 4 percent

Rock outcrop

Percent of map unit: 3 percent

Antelope Valley Area, California

AmF2—Amargosa rocky coarse sandy loam, 9 to 55 percent slopes, eroded

Map Unit Setting

National map unit symbol: hccq Elevation: 650 to 4.000 feet

Mean annual precipitation: 8 to 16 inches

Mean annual air temperature: 45 to 61 degrees F

Frost-free period: 110 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Amargosa and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Amargosa

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from granite

Typical profile

H1 - 0 to 13 inches: coarse sandy loam

H2 - 13 to 18 inches: gravelly coarse sandy loam H3 - 18 to 22 inches: unweathered bedrock

Properties and qualities

Slope: 9 to 55 percent

Depth to restrictive feature: 14 to 20 inches to lithic bedrock

Drainage class: Excessively drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R019XD066CA - SHALLOW LOAMY 9-20"

Hydric soil rating: No

Minor Components

Godde

Percent of map unit: 2 percent

Temescal

Percent of map unit: 2 percent

Hydric soil rating: No

Vista

Percent of map unit: 2 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 2 percent

Hydric soil rating: No

Rock outcrop

Percent of map unit: 2 percent

Hydric soil rating: No

GsC—Greenfield sandy loam, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hcdw Elevation: 2,600 to 4,200 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Greenfield and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Greenfield

Setting

Landform: Alluvial fans, terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 20 inches: sandy loam H2 - 20 to 60 inches: sandy loam

H3 - 60 to 80 inches: stratified loamy sand to coarse sandy loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Hanford

Percent of map unit: 8 percent

Hydric soil rating: No

Ramona

Percent of map unit: 5 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent

Hydric soil rating: No

GsD2—Greenfield sandy loam, 9 to 15 percent slopes, eroded

Map Unit Setting

National map unit symbol: hcdy Elevation: 2,600 to 4,200 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Greenfield and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Greenfield

Setting

Landform: Alluvial fans, terraces

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 17 inches: sandy loam H2 - 17 to 60 inches: sandy loam

H3 - 60 to 80 inches: stratified loamy sand to coarse sandy loam

Properties and qualities

Slope: 9 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Hanford

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 4 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent Landform: Drainageways Hydric soil rating: Yes

HbA—Hanford coarse sandy loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: hcf1 Elevation: 2,390 to 4,200 feet

Mean annual precipitation: 4 to 12 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 150 to 270 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hanford and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

A - 0 to 12 inches: coarse sandy loam C1 - 12 to 36 inches: coarse sandy loam

C2 - 36 to 60 inches: gravelly loamy coarse sand

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Riverwash

Percent of map unit: 5 percent

Landform: Alluvial fans, drainageways

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R030XG022CA - SANDY 4-9"

Hydric soil rating: Yes

Greenfield

Percent of map unit: 5 percent

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

HbC—Hanford coarse sandy loam, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hcf2 Elevation: 2,600 to 4,200 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hanford and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 8 inches: coarse sandy loam H2 - 8 to 39 inches: sandy loam

H3 - 39 to 70 inches: gravelly loamy coarse sand

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Greenfield

Percent of map unit: 8 percent Hydric soil rating: No

Ramona

Percent of map unit: 5 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 2 percent

Hydric soil rating: No

HbD—Hanford coarse sandy loam, 9 to 15 percent slopes

Map Unit Setting

National map unit symbol: hcf3 Elevation: 2.600 to 4.200 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Hanford and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 8 inches: coarse sandy loam H2 - 8 to 39 inches: sandy loam

H3 - 39 to 70 inches: gravelly loamy coarse sand

Properties and qualities

Slope: 9 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

Ramona

Percent of map unit: 5 percent

Hydric soil rating: No

Greenfield

Percent of map unit: 5 percent

Hydric soil rating: No

HcC—Hanford sandy loam, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hcf5 Elevation: 2,600 to 4,200 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hanford and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 8 inches: sandy loam H2 - 8 to 70 inches: fine sandy loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Greenfield

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

HdC—Hanford gravelly sandy loam, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hcf6 Elevation: 150 to 900 feet

Mean annual precipitation: 9 to 12 inches Mean annual air temperature: 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Hanford and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hanford

Setting

Landform: Alluvial fans

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from granite

Typical profile

H1 - 0 to 8 inches: gravelly sandy loam H2 - 8 to 70 inches: gravelly fine sandy loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: A

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Greenfield

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

LdF—Las Posas-Toomes rocky loams, 30 to 50 percent slopes

Map Unit Setting

National map unit symbol: hcfk Elevation: 150 to 4,000 feet

Mean annual precipitation: 8 to 25 inches

Mean annual air temperature: 45 to 63 degrees F

Frost-free period: 110 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Las posas and similar soils: 55 percent Toomes and similar soils: 30 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Las Posas

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from basalt

Typical profile

H1 - 0 to 3 inches: loam H2 - 3 to 24 inches: clay

H3 - 24 to 27 inches: weathered bedrock

Properties and qualities

Slope: 30 to 50 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R019XD964CA - LOAMY 9-20"

Description of Toomes

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Mountainflank, side slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from basalt

Typical profile

H1 - 0 to 17 inches: loam

H2 - 17 to 21 inches: unweathered bedrock

Properties and qualities

Slope: 30 to 50 percent

Depth to restrictive feature: 4 to 20 inches to lithic bedrock

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 4 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent Landform: Drainageways Hydric soil rating: Yes

Rg—Riverwash

Map Unit Composition

Riverwash: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Riverwash

Setting

Landform: Drainageways

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 6 inches: sand

H2 - 6 to 60 inches: stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 2 percent

Drainage class: Excessively drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95

to 19.98 in/hr)

Depth to water table: About 0 inches Frequency of flooding: Frequent

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydrologic Soil Group: A

Ecological site: R019XG905CA - Riparian

Hydric soil rating: Yes

Minor Components

Sandy alluvial land

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Sa—Sandy alluvial land

Map Unit Setting

National map unit symbol: hch5 Mean annual precipitation: 14 inches Mean annual air temperature: 61 degrees F Farmland classification: Not prime farmland

Map Unit Composition

Sandy alluvial land: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sandy Alluvial Land

Setting

Landform: Flood plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 10 inches: sand

H2 - 10 to 30 inches: stratified sand to loam

H3 - 30 to 60 inches: stratified gravelly sand to gravelly loam

Properties and qualities

Slope: 0 to 2 percent

Drainage class: Excessively drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: About 10 inches Frequency of flooding: Frequent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7w

Hydrologic Soil Group: B

Ecological site: R019XE025CA - SANDY 9-20"

Hydric soil rating: Yes

Minor Components

Riverwash

Percent of map unit: 10 percent Landform: Drainageways Hydric soil rating: Yes

Unnamed

Percent of map unit: 5 percent Hydric soil rating: No

TsF—Terrace escarpments

Map Unit Setting

National map unit symbol: hchq Mean annual precipitation: 14 inches Mean annual air temperature: 61 degrees F Farmland classification: Not prime farmland

Map Unit Composition

Terrace escarpments: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Terrace Escarpments

Setting

Landform: Terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave Parent material: Alluvium

Typical profile

H1 - 0 to 60 inches: variable

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e Ecological site: R019XE024CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Unnamed

Percent of map unit: 10 percent

VsE—Vista coarse sandy loam, 15 to 30 percent slopes

Map Unit Setting

National map unit symbol: hcj1 Elevation: 400 to 3,900 feet

Mean annual precipitation: 10 to 18 inches
Mean annual air temperature: 59 to 64 degrees F

Frost-free period: 210 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Vista and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vista

Setting

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

H1 - 0 to 16 inches: coarse sandy loam H2 - 16 to 32 inches: coarse sandy loam H3 - 32 to 36 inches: weathered bedrock

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Minor Components

Amargosa

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

VsE2—Vista coarse sandy loam, 15 to 30 percent slopes, eroded

Map Unit Setting

National map unit symbol: hcj2 Elevation: 400 to 3,900 feet

Mean annual precipitation: 10 to 18 inches Mean annual air temperature: 59 to 64 degrees F

Frost-free period: 210 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Vista and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vista

Setting

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

H1 - 0 to 12 inches: coarse sandy loam H2 - 12 to 28 inches: coarse sandy loam H3 - 28 to 32 inches: weathered bedrock

Properties and qualities

Slope: 15 to 30 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Amargosa

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

VsF—Vista coarse sandy loam, 30 to 50 percent slopes

Map Unit Setting

National map unit symbol: hcj3 Elevation: 400 to 3,900 feet

Mean annual precipitation: 10 to 18 inches
Mean annual air temperature: 59 to 64 degrees F

Frost-free period: 210 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Vista and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vista

Setting

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

H1 - 0 to 16 inches: coarse sandy loam H2 - 16 to 32 inches: coarse sandy loam H3 - 32 to 36 inches: weathered bedrock

Properties and qualities

Slope: 30 to 50 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Amargosa

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 3 percent

Hydric soil rating: No

Sheridan

Percent of map unit: 2 percent

Hydric soil rating: No

VsF2—Vista coarse sandy loam, 30 to 50 percent slopes, eroded

Map Unit Setting

National map unit symbol: hcj4 Elevation: 400 to 3,900 feet

Mean annual precipitation: 10 to 18 inches
Mean annual air temperature: 59 to 64 degrees F

Frost-free period: 210 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Vista and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Vista

Setting

Landform: Hills

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Residuum weathered from granite

Typical profile

H1 - 0 to 12 inches: coarse sandy loam H2 - 12 to 28 inches: coarse sandy loam H3 - 28 to 32 inches: weathered bedrock

Properties and qualities

Slope: 30 to 50 percent

Depth to restrictive feature: 20 to 40 inches to paralithic bedrock

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Amargosa

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

WgC-Wyman gravelly loam, 2 to 9 percent slopes

Map Unit Setting

National map unit symbol: hcj5 Elevation: 300 to 2,500 feet

Mean annual precipitation: 9 to 12 inches
Mean annual air temperature: 59 to 63 degrees F

To the international and the conference of the control of the cont

Frost-free period: 200 to 300 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Wyman and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wyman

Setting

Landform: Alluvial fans, terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from basic igneous rock

Typical profile

H1 - 0 to 10 inches: gravelly loam H2 - 10 to 55 inches: gravelly loam

Properties and qualities

Slope: 2 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Greenfield

Percent of map unit: 10 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 5 percent

Hydric soil rating: No

WgD—Wyman gravelly loam, 9 to 15 percent slopes

Map Unit Setting

National map unit symbol: hcj6 Elevation: 300 to 2,500 feet

Mean annual precipitation: 9 to 12 inches

Mean annual air temperature: 59 to 63 degrees F

Custom Soil Resource Report

Frost-free period: 200 to 300 days

Farmland classification: Not prime farmland

Map Unit Composition

Wyman and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wyman

Setting

Landform: Alluvial fans, terraces

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from basic igneous rock

Typical profile

H1 - 0 to 10 inches: gravelly loam H2 - 10 to 55 inches: gravelly loam

Properties and qualities

Slope: 9 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R019XD964CA - LOAMY 9-20"

Hydric soil rating: No

Minor Components

Toomes

Percent of map unit: 5 percent

Hydric soil rating: No

Los posas

Percent of map unit: 5 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 4 percent

Hydric soil rating: No

Unnamed

Percent of map unit: 1 percent Landform: Drainageways

Custom Soil Resource Report

Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

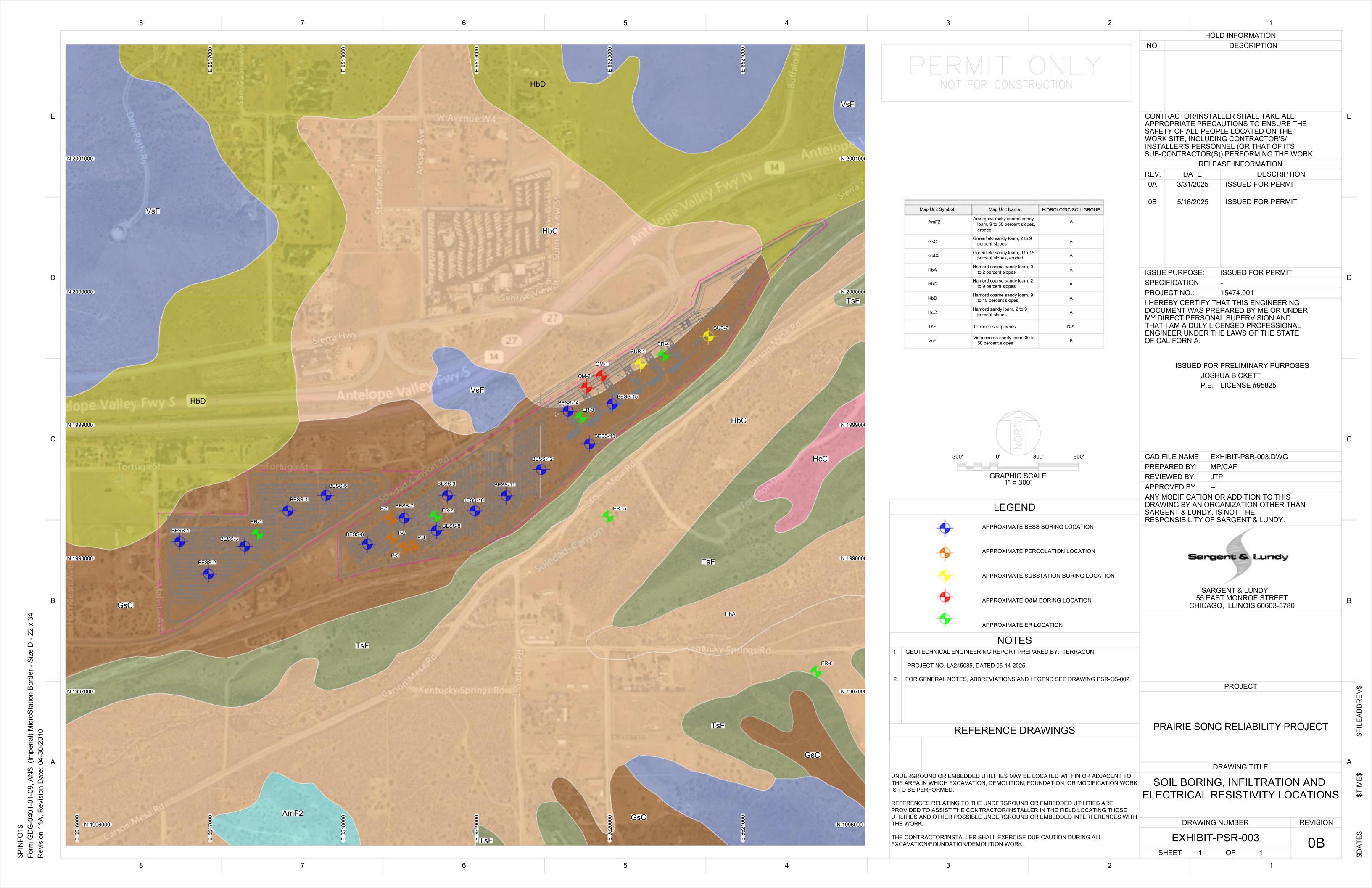
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374


United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

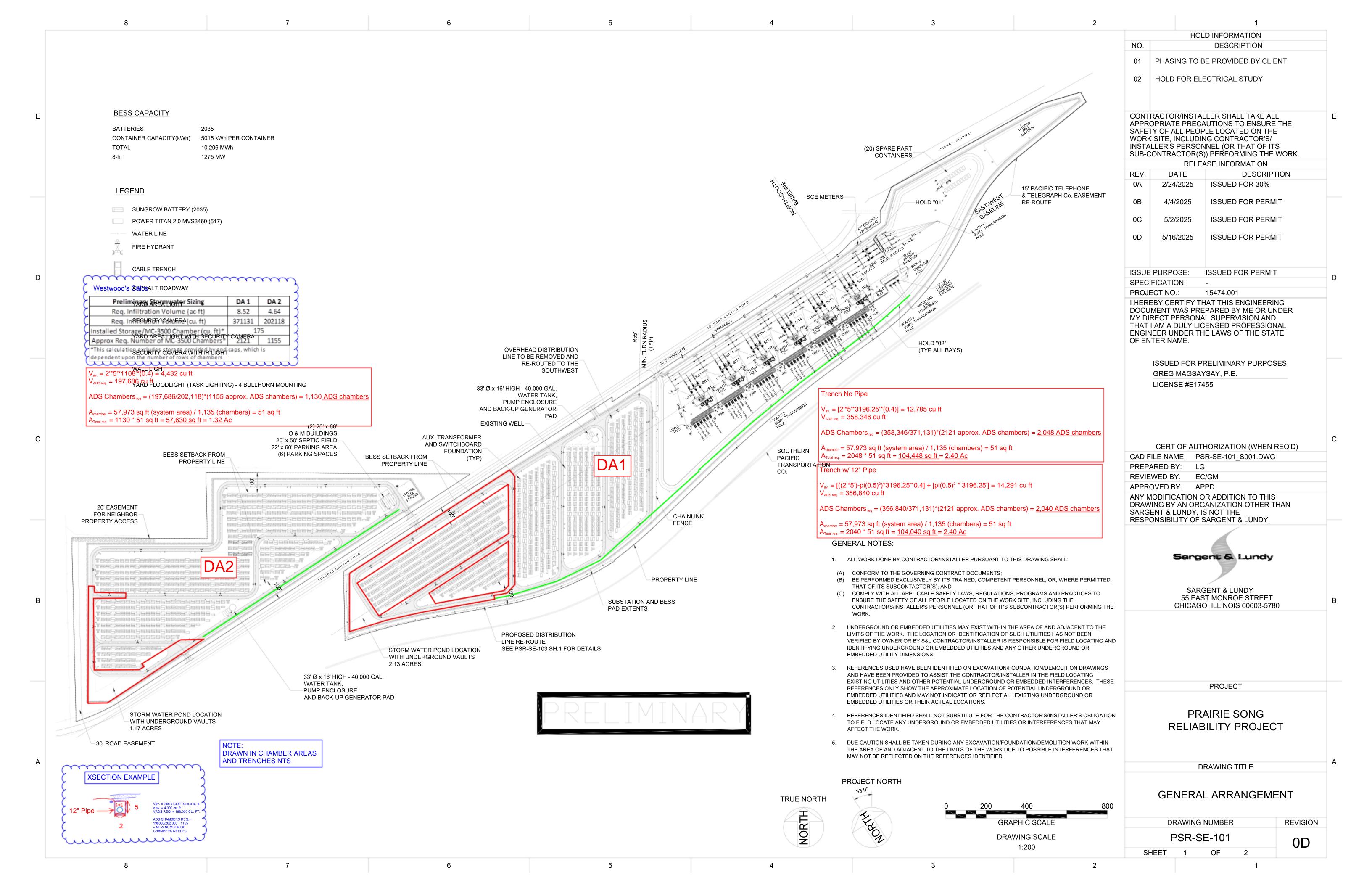
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Attachment H: ADS Chambers for Underground Detention Basin

Calculations for determining the number and volume of required ADS MC-3500 underground stormwater chambers are described in the following:

The hydrology study and stormwater sizing for the project area was conducted by Westwood. S&L proposed the underground stormwater chambers manufactured by ADS to help meet stormwater needs on site. Westwood agreed those would be acceptable to use on site and provided preliminary calculations of what would be required as seen below.


Preliminary Stormwater Sizing	DA 1	DA 2
Req. Infiltration Volume (ac-ft)	8.52	4.64
Req. Infiltration Volume (cu. ft)	371131	202118
Installed Storage/MC-3500 Chamber (cu. ft)*	175	
Approx Req. Number of MC-3500 Chambers*	2121	1155

^{*}This calculation excludes storage provided by end caps, which is dependent upon the number of rows of chambers

To help reduce some costs per Power's request, S&L incorporated infiltration trenches along the south sides of the BESS and switchyard locations. The first step in S&L's calculation was determining the average volume the infiltration trenches would occupy. This was done by taking the length of trench multiplied by the assumed 2' wide trench width, and 5' trench depth. The trench would be backfilled with coarser stone aggregate to help the trenches withstand heavier vehicular traffic. In doing so, there would be more air gaps compared to using finer backfill. Therefore, a void ratio factor of 0.4 was multiplied to the average trench volumes. The average trench volumes were subtracted for each drainage areas required infiltration volumes to determine the new required volumes.

The number of ADS chambers required was calculated using a ratio between the new required volumes and the initial volumes provided by Westwood multiplied by Westwood's approximate estimation of the number of chambers required.

The approximate area required for each drainage area for the chambers was determined by first calculating the area of one chamber. Using ADS' product drawings and dividing the system area by number of chambers, S&L calculated an area per chamber of ~51 sq ft. The total required area per drainage area was determined by multiplying the unit area by the number of adjusted required ADS chambers calculated earlier.

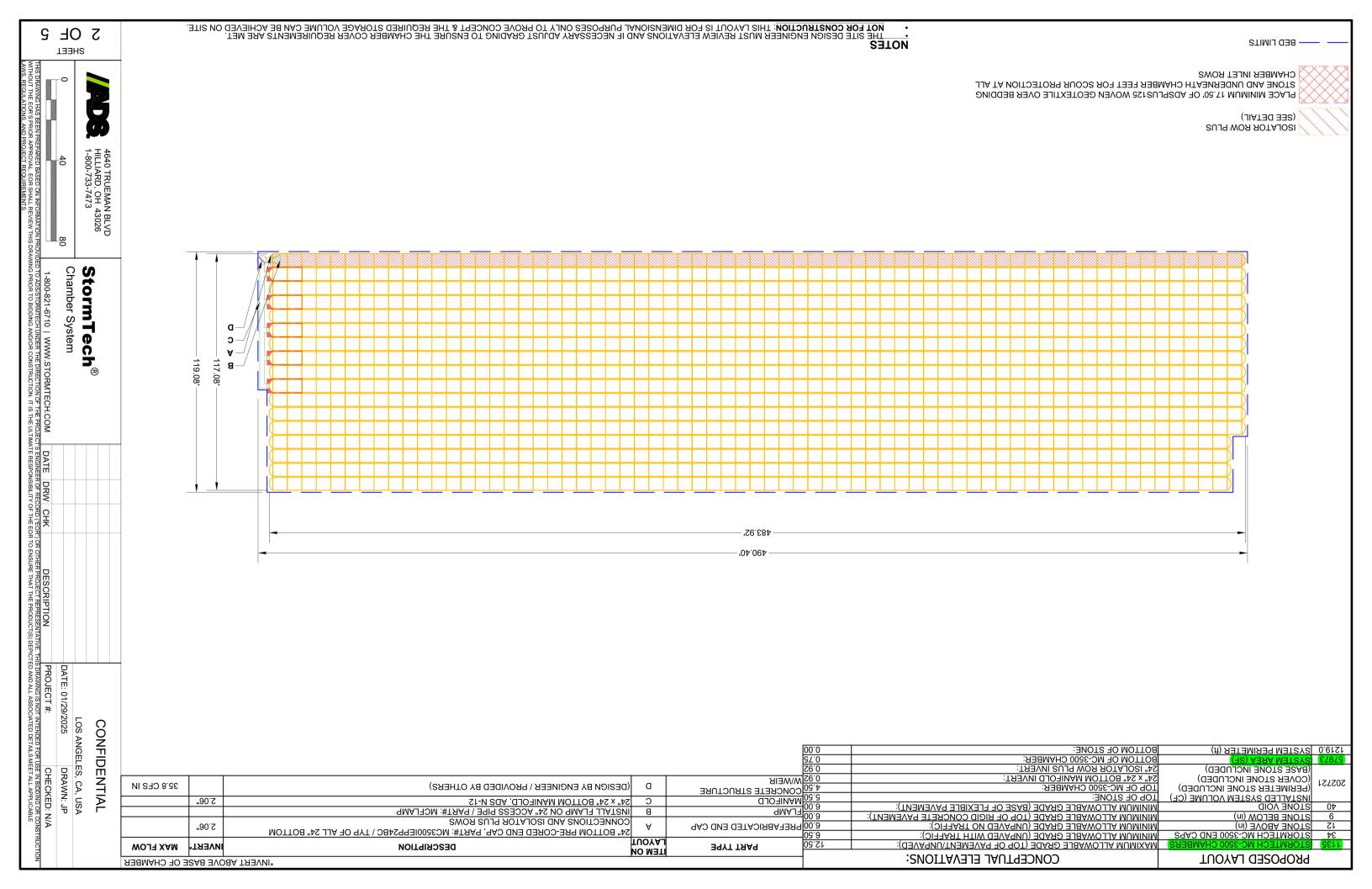
PROJEC	PROJECT INFORMATION			
ENGINEERED PRODUCT MANAGER				
ADS SALES REP				
PROJECT NO.				
PROJECT NO.				

CONFIDENTIALLOS ANGELES, CA, USA

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK). AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3"
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE
 GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER
 DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED
 FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.
- 10. MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
- 11. ADS DOES NOT DESIGN OR PROVIDE MEMBRANE LINER SYSTEMS. TO MINIMIZE THE LEAKAGE POTENTIAL OF LINER SYSTEMS, THE MEMBRANE LINER SYSTEM SHOULD BE DESIGNED BY A KNOWLEDGEABLE GEOTEXTILE PROFESSIONAL AND INSTALLED BY A QUALIFIED CONTRACTOR.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

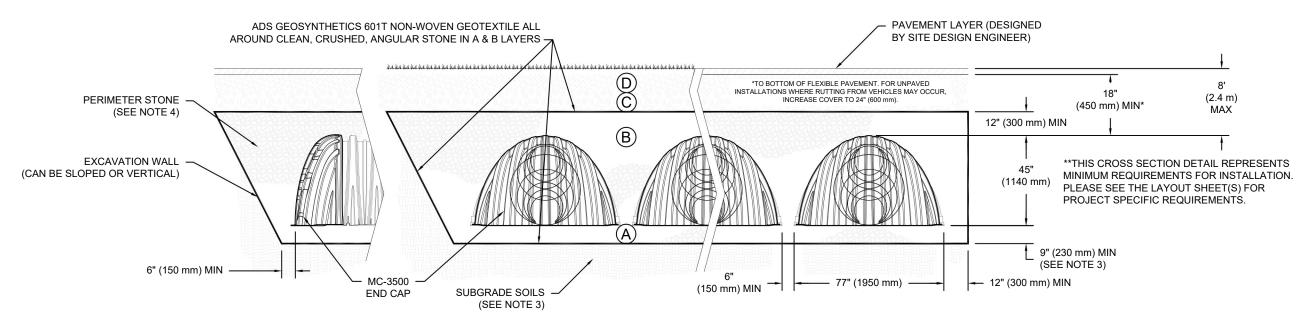

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A
 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
- 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS.
- 8. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE; AASHTO M43 #3, 357, 4, 467, 5, 56, OR 57
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- 11. ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1. STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 2. THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

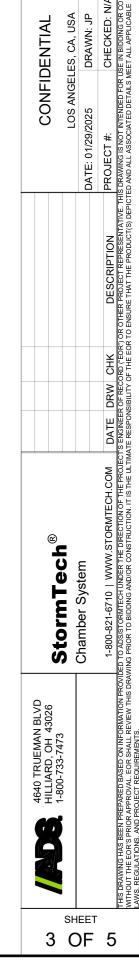
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

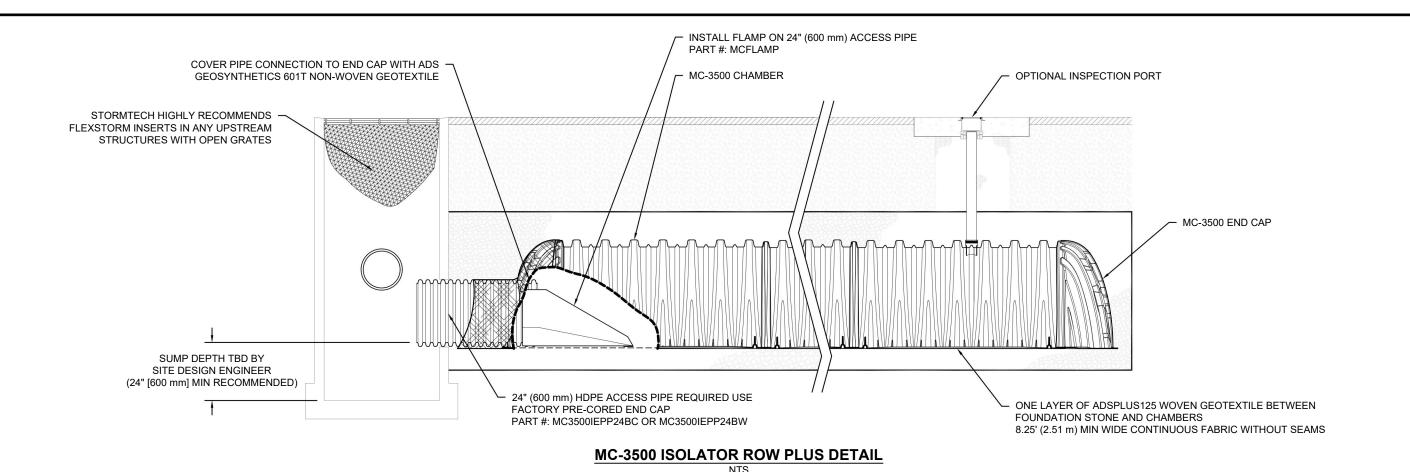
CONTACT STORMTECH AT 1-800-821-6710 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.



ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

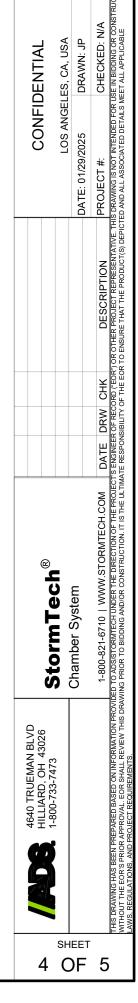
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE⁵	AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE⁵	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}


PLEASE NOTE:

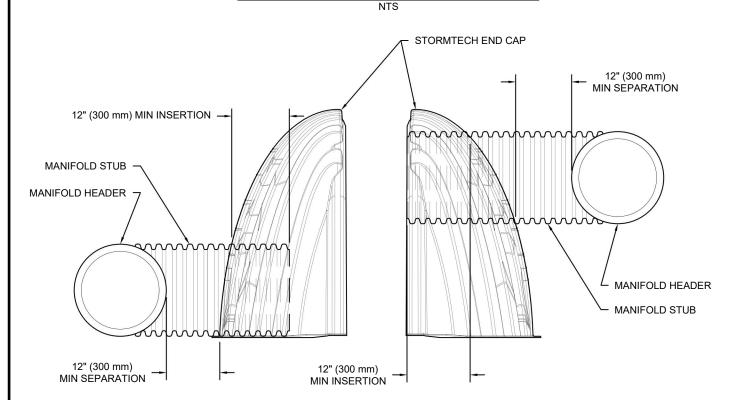

- 1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- 2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- 3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS
- 4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.
- 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL".

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. REFERENCE STORMTECH DESIGN MANUAL FOR BEARING CAPACITY GUIDANCE.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 450 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

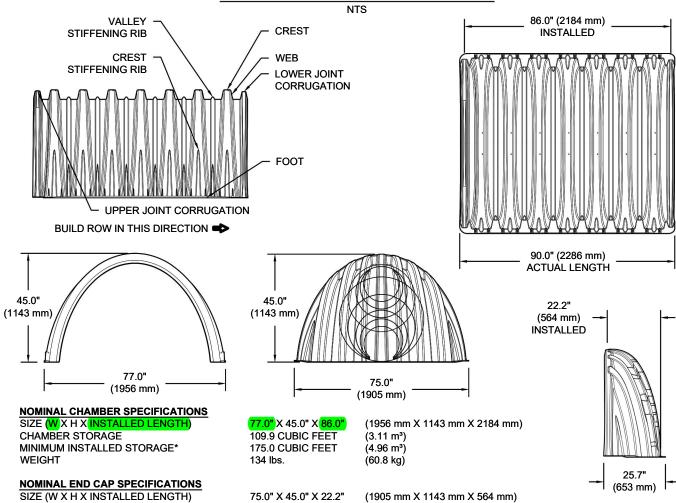

INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT


- A. INSPECTION PORTS (IF PRESENT)
- A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM. STEP 4)

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.



MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

MC-3500 TECHNICAL SPECIFICATION

(0.42 m³) (1.28 m³)

(22.2 kg)

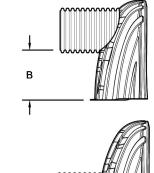
*ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION, 6" SPACING BETWEEN CHAMBERS, 6" (152 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY

49 lbs.

14.9 CUBIC FEET

45.1 CUBIC FEET

STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C"


PART#	STUB	В	С
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)	
MC3500IEPP06B			0.66" (17 mm)
MC3500IEPP08T	8" (200 mm)	31.16" (791 mm)	
MC3500IEPP08B			0.81" (21 mm)
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B			0.93" (24 mm)
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B			1.35" (34 mm)
MC3500IEPP15T	15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B			1.50" (38 mm)
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (309 11111)	
MC3500IEPP18BC	16 (450 11111)		1.77" (45 mm)
MC3500IEPP18BW			1.77 (45 11111)
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)	14.40 (308 MM)	
MC3500IEPP24BC	24 (000 mm)		2.06" (52 mm)
MC3500IEPP24BW			2.00 (52 11111)
MC3500IEPP30BC	30" (750 mm)		2.75" (70 mm)

NOTE: ALL DIMENSIONS ARE NOMINAL

END CAP STORAGE

WEIGHT

MINIMUM INSTALLED STORAGE*

CUSTOM PRECORED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM **INVERT LOCATIONS ON THE MC-3500** END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE.

LOS ANGELES, CA, USA DATE: 01/29/2025 DRAWN: JP **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473

CONFIDENTIAL

SHEET

5 OF 5