DOCKETED	
Docket Number:	25-OPT-02
Project Title:	Prairie Song Reliability Project
TN #:	264390
Document Title:	App 3-15A Water Quality Management Plan Part 1
Description:	N/A
Filer:	Erin Phillips
Organization:	Dudek
Submitter Role:	Applicant Consultant
Submission Date:	6/20/2025 1:49:08 PM
Docketed Date:	6/20/2025

Appendix 3.15A

Water Quality Management Plan 1 of 6

ISSUE SUMMARY AND APPROVAL PAGE WATER QUALITY MANAGEMENT PLAN FOR PRAIRIE SONG RELIABLITY PROJECT

[Revision	Purpose of Issue	Date
	С	Review	05/16/2025

This is to confirm that this report has been prepared, reviewed and approved in accordance with Sargent & Lundy's Standard Operating Procedure SOP-0405, Miscellaneous Engineering and Design Deliverables, which is part of our Quality Management System.

Revision	Prepared By	Reviewed By	Approved By	
C Crispin Flores		James Perry	—	
	Digitally signed by Crispin Flores Dir C-VUS Crispin Flores Decretar 14 (user, CheCrispin Flores Decretar 14 (user, CheCrispin Flores Decretar 14 (user, CheCrispin Flores Decretar 2011/27/15/000	James T Perry Schemet James They Schemet James They Bandward Autor Cate		

Water Quality Management Plan (WQMP)

Project Name:

PRAIRIE SONG RELIABILITY PROJECT

Prepared for: Prairie Song Reliability Project LLC Near 800 Soledad Canyon Road Acton, California, 93510

Prepared by:

Sargent & Lundy

Engineer: Joshua Bickett Registration No. 95825 55 E. Monroe St. Chicago, IL 60603 312-269-2000 **Engineer's Seal**

Prepared on: 05-16-2025

Project Owner's Certification					
Permit/Application No.	Permit/Application No. Grading Permit No.				
Tract/Parcel Map No.	Building Permit N	Jo.			
CUP, SUP, and/or APN (Sp	ecify Lot Numbers if Portions of Tract)	APN: 3056-019-013, 3056-015-023, 3056- 019-037, 3056-019- 040, 3056-015-008, 3056-017-022, 3056- 017-904, 3056-017- 905, 3056-017-906, 3056-017-907, 3056- 017-027, 3056-017- 028, 3056-017-026, 3056-017-007, 3056- 017-020, 3056-017-021			

This Water Quality Management Plan (WQMP) has been prepared for Prairie Song Reliability Project LLC by Sargent & Lundy (S&L). The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current the Los Angeles County Low Impact Development (LID) Standards Manual and the applicable provisions of the Municipal Separate Storm Sewer System (MS4) Permit, the Construction General Permit, and any other relevant Waste Discharge Requirements issued by the California Regional Water Quality Control Board, Los Angeles Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner: Prairie Song Reliability Project LLC					
Title	Director				
Company	Prairie Song Reliability Project LLC				
Address					
Email					
Telephone #	541-325-1157				
Signature		Date	05-16-2025		

Contents

Section 1		Discretionary Permit(s) and Water Quality Conditions3	
Section 2		Project Description4	
	2.1	General Description	
	2.2	Post Development Drainage Characteristics	
	2.3	Property Ownership/Management	
Section 3		Site & Watershed Characterization7	
	3.1	Site Conditions	
	3.1.	1 Existing Site Conditions	
	3.1.	2 Infiltration-Related Characteristics	
	3.2	Proposed Site Development Activities	
	3.2.	1 Overview of Site Development Activities	
	3.2.	2 Project Attributes Influencing Stormwater Management	
	3.2.	3 Effects on Infiltration and Harvest and Use Feasibility	
	3.3	Receiving Waterbodies10	
	3•4	Stormwater Pollutants or Conditions of Concern	
	3.5	Hydrologic Conditions of Concern10	
Section 4		Site Plan and Drainage Plan11	
	4.1	Drainage Management Area Delineation11	
	4.2	Overall Site Design BMPs11	
	4.3	DMA Characteristics and Site Design BMPs 12	
	4.3.	1 Project Area (Onsite)	
	4.3	,	
	4.4	Source Control BMPs 12	
Section 5		BMP15	
	5.1	BMPs in DMA 1	
	3.2.	1 Structural LID BMP for DMA 1 and 2	
	3.2.	2 Structural LID BMP for Gen-Tie Pad Locations 15	
	3.2.	3 BESS Area Offsite Stormwater Management 15	
	5.2	Summary of LID BMPs16	
Section 7		Educational Materials Index17	
Attachme	nt A:	Educational Materials	
Attachme	nt B:	Operations and Maintenance Plan	
Attachme	nt C:	Site Overview	
Attachme	nt D:	Pre-Development Site Conditions	
Attachme	nt E:	Post Development Site Conditions	
Attachme	nt F:	Geotechnical Report	
Attachme	nt G:	Soil Map	

- Attachment H: ADS Chambers for Underground Detention Basin
- Attachment I: Percolation Test Results
- Attachment J: Hydrology Report
- Attachment K: Stormwater Report

Section 1 Discretionary Permit(s) and Water Quality Conditions

Project Infomation					
Permit/Application No.		Site Address or Tract/Parcel Map No.	Near 800 Soledad Canyon Road Acton, California, 93510		
Additional Information/ Comments:					
	Water Quality	Conditions			
Water Quality Conditions from prior approvals or applicable watershed-based plans	There were no prior approv	vals for this project.			

Section 2 Project Description

The proposed Battery Storage project is located approximately 3 miles northeast of the city of Acton, California The project is located in Los Angeles County and will be approximately 66.18 acres. The site is located north of Southern Pacific railroad. The final land cover of the site will be primarily gravel for the roads and the substation area, while the batteries shown within Attachment E will be supported by mat foundations. The existing site primarily consists of shrubland. There will be a minimum 8-ft height security wall surrounding the site. The side slopes grading to the existing surfaces will be seeded, as shown on Attachment D. The existing site is of Hydrologic Soil Group (HSG) A as shown in Attachment I. Any of material or waste collected onsite will be hauled offsite. The proposed project will take place within the site boundaries except for the improvement of the access roads leading to the site. The site will be owned by Prairie Song Reliability Project LLC. The site is located within the Arrastre Canyon-Santa Clara River watershed and is located directly north of the Santa Clara River.

Due to the existing topography of the site and area constraints, underground storm water detention areas and infiltration trenches are used throughout the site. The underground storm water detention areas are located in the western portion of the site for each of the battery areas.

Description of Proposed Project				
Site Location	Approximately 3 miles northeast of Acton, California within Los Angeles County, as shown on Exhibit C.			
Project Area (ft ²): 2,882,801	Number of Dwelling Units: 0 SIC Code: 3691 & 5063			
Narrative Project Description:	The proposed Battery Storage project will be approximately 66.18 acres. The final land cover of the site will be primarily asphalt for the roads and gravel for the substation area, while the battery storage area will be a pad with stone surfacing. There will be a vegetative buffer surrounding the site. The side slopes grading to the existing surfaces will be seeded. The existing site is primarily shrubland belonging to Hydrologic Soil Group (HSG) A . Any of material or waste collected onsite will be hauled offsite. This development is considered a Priority Project because the project creates over 10,000 square feet of impervious surfacing.			

2.1 General Description

	Pervious (Sand and Dirt)		Impervious (Gravel, Asphalt and Concrete)	
Project Area	Area (acres)	Percentage	Area (acres)	Percentage
Pre-Project Conditions	62.73	94.8%	3.45	5.2%
Post-Project Conditions	3.91	5.9%	62.27	94.1%

2.2 **Post Development Drainage Characteristics**

Onsite Drainage Area

The proposed site modifications will utilize the existing 66.18 acres within the proposed limits of the Battery Storage project that currently drains to the southwest of the site. The proposed site consists of all gravel and impervious surfacing, which can be seen in Attachment E. To convey stormwater runoff into the underground detention basin, an infiltration trench system and storm sewer system are designed using gravity flow.

The underground detention chambers will be provided within the western portion of each of the battery sites. The buried underground detention chambers are being provided in accordance with the County of Los Angeles Department of Public Works (LADPW) Guidelines, to meet the stormwater management requirements for stormwater detention. Stormwater runoff from the Gen-Tie pad areas will drain to infiltration ponds located at each pad. The new roads leading to the Gen-Tie pads will be gravel-surfaced and drain through perforated underdrains to the infiltration basin located at each of the Gen-Tie pads. The infiltration basins are sized for the 100-year storm event.

2.3 Property Ownership/Management

The project substation is owned by Prairie Song Reliability Project LLC. The different property lines can be shown on Attachment C.

Section 3 Site & Watershed Characterization

3.1 Site Conditions

3.1.1 Existing Site Conditions

The existing 66.18 acre area of the site is located approximately 3 miles northeast of the city of Acton, California in Los Angeles County, California. The current site is located on moderate terrain ranging from 2% to greater than 10%, with steeper slopes near the southwest of the site, as shown on Attachment D. The overall drainage pattern is southwest, draining towards the Santa Clara River to the southwest of the site.

Existing Land Uses							
Land Use Description	Total Area (acres)	Impervious Area (acres)	Pervious Area (acres)	Imperviousness (%)			
Dirt	12.48	0.00	12.48	0%			
Sand	33.77	0.00	33.77	0%			
Gravel	3.45	3.45	0.00	100%			
Brush	16.48	0.00	16.48	0%			
Total	66.18	3.45	62.73	5.21%			

3.1.2 Infiltration-Related Characteristics

3.1.2.1 Hydrogeologic Conditions

During geotechnical exploration at the site (Attachment F), groundwater was not encountered in borings while drilling and the recorded historical groundwater depth is more 100 feet below ground surface. As such, groundwater is not anticipated to occur within the depth of excavations or foundation installations at the site. Infiltration is proposed at all areas of the project, including the BESS pads, Gen-Tie pads, and new access roads.

3.1.2.2 Soil and Geologic Infiltration Characteristics

The existing site is primarily shrubland belonging to Hydrologic Soil Group (HSG) A. The existing site is covered by gravel, sand, and brush. This can be seen in Attachment I. Curve numbers are taken from the NRCS TR-55 (Reference 5.3). Below is a table outlining these calculations. The subsurface investigation completed by Terracon in December 2024 shows that the lowest infiltration rate between P-1, P-2, P-3, and P-4 was 1.3 in/hr. The Infiltration Report can be seen in Attachment I.

HSG	Total Area	Shrub CN Acres		Gravel	
	Acres			CN	Acres
A	66.18	55	62.73	76	3.45

Pre-Existing Composite Curve Number

Post-Construction Composite Curve Number

HSG	Total Area	Impervi	ous	Gravel		Grass	
	Acres	CN	Acres	CN	Acres	CN	Acres
А	66.18	98	7.94	76	54.33	49	3.91

3.1.2.4 Summary of Infiltration Opportunities and Constraints of Existing Site

Four locations were used for percolation testing. The results ranged from 1.3 inches/hour at P-3 to 4.6 inches/hour at P-1. The infiltration report is located within Attachment I.

Infiltration is proposed at all areas of the project, including the BESS pads, Gen-Tie pads, and new access roads. The BESS pads will utilize a combination of ADS Stormtech chambers and infiltration trenches, while the Gen-Tie pads and access roads will utilize at-grade infiltration ponds.

3.2 Proposed Site Development Activities

3.2.1 Overview of Site Development Activities

The development will be a battery storage site with an adjacent substation. The site will be occupied and will only require periodic maintenance activities. Activities to be conducted periodically will be maintenance of the underground basin and landscaping of the site, as well as any maintenance required for the battery facilities. The site is changing from mostly pervious surfacing like sand and dirt to mostly gravel and impervious surfacing. The overall drainage pattern of the site is still from east to southwest. This can be seen on Attachment E.

3.2.2 Project Attributes Influencing Stormwater Management

The proposed Prairie Song Reliability Project (Project) will be composed of lithium-ion batteries, inverters, medium-voltage (MV) transformers, a switchyard, a collector substation, and other associated equipment to interconnect into the substation (Point of Interconnection). The batteries will be installed in non-habitable enclosures.

Electric energy will be transferred from the existing power grid to the Project batteries for storage and from the Project batteries to the power grid when additional electricity is needed.

During operation there will be minimal waste generated on site and there will be minimum traffic to the area except to maintain the underground detention basin and landscaping, or battery facilities. There will be no discharge to any environmentally sensitive features.

The proposed land surfacing of the site will consist of mat foundations for the batteries and inverters. Drilled piers will be used within the substation for steel structures and the control house, and mat foundations will be used for the O&M building and GSU transformers. The roads within the battery areas will be asphalt paved, and the areas between the battery areas and asphalt roads will be gravel surfaced. The substation perimeter roads and the area between foundations and equipment will be surfaced with gravel.

The Gen-Tie pads consist of a monopole and its foundation, and some underground communication lines. The pad areas and their access roads will be gravel surfaced.

The runoff from within the project boundary will be contained within the underground detention areas on site which is sized for the two drainage areas of the battery yards. Upstream offsite runoff will be diverted both around and through the project site using culverts. The culverts have been sized for the 100-year, 24-hour rain event. Large outfall velocities for the culverts routed through and around the BESS and substation site will be minimized using energy dissipators and riprap.

Offsite runoff impacting the Gen-Tie pads will be managed by small diversion ditches along the pad edges and access roads as well as at grade infiltration ponds on the pads. Access roads for the North 3/South 8 and North 4 Gen-Tie pads are located within a flood plain. To maintain pre and post development conditions to the greatest extend possible, the access roads to these sites will be constructed to follow existing grade and use native material. Occasional maintenance will be needed following large storm events.

	Propo	sed Land U	lses	
Land Use Description	Total Area (acres)	Impervious Area (acres)	Pervious Area (acres)	Imperviousness (%)
Gravel Surfacing	54.33	54.33	0	100%
Impervious Surfacing	7.94	7.94	0	100%
Shrub	3.91	0	3.91	0%
Total	66.18	62.27	3.91	94%

3.2.3 Effects on Infiltration and Harvest and Use Feasibility

Infiltration is proposed at all areas of the project, including the BESS pads, Gen-Tie pads, and new access roads. Infiltration rates are provided in Attachment I.

3.3 Receiving Waterbodies

The stormwater collected at the project site will be infiltrated through the subgrade. No direct stormwater runoff discharges are anticipated for storm events up to the design storm event as indicated within Westwood's Hydrology and Stormwater reports attached in Attachments J and K.

3.4 Stormwater Pollutants or Conditions of Concern

Pollu	tants or Co	nditions	of Conceri	n
Pollutant	Expected from Proposed Land Uses/Activities (Yes or No)	Receiving Waterbody Impaired (Yes or No)	Priority Pollutant from WQIP or other Water Quality Condition? (Yes or No)	Pollutant of Concern (Primary, Other, or No)
Suspended-Solids	Yes	No	No	No
Nutrients	No	No	No	No
Heavy Metals	No	N/A	N/A	No
Bacteria/Virus/Pathogens	No	N/A	Yes	Primary
Pesticides	No	N/A	N/A	No
Oil and Grease	No	No	No	No
Toxic Organic Compounds	No	N/A	N/A	No
Trash and Debris	No	N/A	N/A	No
Dry Weather Runoff	No	N/A	Yes	Primary

3.5 Hydrologic Conditions of Concern

Does a hydrologic condition of concern exist for this project?

No – An HCOC does not exist for this receiving water because:

Project discharges directly to a protected conveyance (bed and bank are concrete lined the entire way from the point(s) of discharge to a receiving lake, reservoir, embayment, or the Ocean

Project discharges directly to storm drains which discharge directly to a reservoir, lake, embayment, ocean or protected conveyance (as described above)

The project discharges to an area identified in the WMAA as exempt from hydromodification concerns

Yes – An HCOC does exist for this receiving water because none of the above are applicable.

Section 4 Site Plan and Drainage Plan

4.1 Drainage Management Area Delineation

The site has two drainage management areas that are composed of different surfacing types. The two DMAs were made up of the gravel surfacing and the impervious surfacing. The BMPs selected for the project site are underground infiltration chambers and infiltration trenches.

4.2 Overall Site Design BMPs

Minimize Impervious Area – Impervious areas will be minimized where possible. Runoff will be detained onsite in underground detention chambers. Impervious surfacing is required due to the site's intended use for operation and safety.

Maximize Natural Infiltration Capacity- The geotechnical report and hydrology report are attached in Attachments F and J.

Preserve Existing Drainage Patterns and Time of Concentration- The existing drainage pattern would be northeast to southwest and then ultimately will flow into Santa Clara River. The site will capture runoff from the site area and will ultimately drain southward into the underground detention areas. Runoff onsite will not be discharged into Santa Clara River and will instead be infiltrated through the subgrade.

Disconnect Impervious Areas- Disconnected impervious areas will not be used in order to be able to access the battery storage and substation areas, which requires convenient access for maintenance and emergencies.

Protect Existing Vegetation and Sensitive Areas- There are no discharges to sensitive areas from either onsite or offsite. A vegetative buffer will be provided surrounding the project site.

Revegetate Disturbed Areas - Side slopes will be vegetated once the site is constructed.

Soil Stockpiling and Site Generated Organics – Soil stockpiling will not occur during regular site activities within the project site. The site will be inhabited and maintenance activities will be conducted for the underground detention basin chambers and equipment and periodic landscaping activities as necessary.

Firescaping- Plants will be selected to minimize the risks of fire. Vegetation will be selected in accordance to the zone of the battery storage area.

Water Efficient Landscaping- Water efficient landscaping will be incorporated into the landscape design and plant selection, as well as in the landscaping plan.

Slopes and Channel Buffers- Slope and channel buffers will be maintained to decrease the potential for erosion of slopes

4.3 DMA Characteristics and Site Design BMPs

4.3.1 Project Area (Onsite)

The gravel surfacing onsite is located as shown on Attachment E. The total area of the gravel surfacing is 54.33 acres. The gravel surfacing is 100% impervious. The site drains to an infiltration trench which will then allow the runoff to flow into the underground detention chambers.

The impervious surfacing onsite is located as shown on Attachment E. This area will be composed of the internal access roads within the BESS portion of the project. The access roads within the BESS area will be paved with asphalt. The total area of the impervious surfacing is 7.94 acres. The surfacing is 100% impervious.

The site drains to catch chambers located throughout the facility and an infiltration trench which will then allow the runoff to flow into the underground detention chambers.

4.3.2 DMA Summary

	Drain	age Manag	ement Areas	
DMA (Number/Description)	Total Area (acres)	Imperviousness (%)	Infiltration Feasibility Category (Full, Partial, or No Infiltration)	Hydrologic Source Controls Used
DA1	23.65	83%	Full Infiltration	Underground Detention Chambers
DA2	47.21	83%	Full Infiltration	Underground Detention Chambers

4.4 Source Control BMPs

	Non-Structural S	Source	Control	BMPs
		Che	ck One	Reason Source Control is
Identifier	Name	Included	Not Applicable	Not Applicable
N1	Education for Property Owners, Tenants and Occupants			

Water Quality Management Plan (WQMP)

Prairie Song Reliability Project

N2	Activity Restrictions	\boxtimes	
N3	Common Area Landscape Management		
N4	BMP Maintenance	\boxtimes	
N5	Title 22 CCR Compliance (How development will comply)		
N6	Local Industrial Permit Compliance		The generators will require refueling.
N7	Spill Contingency Plan	\boxtimes	
N8	Underground Storage Tank Compliance		There will be no underground structures except the detention pond, which will only hold water.
N9	Hazardous Materials Disclosure Compliance		Transformer oil and BESS classify as hazardous.
N10	Uniform Fire Code Implementation	\boxtimes	
N11	Common Area Litter Control		The battery storage area will be staffed.
N12	Employee Training		
N13	Housekeeping of Loading Docks		No loading docks will be onsite.
N14	Common Area Catch Basin Inspection	\boxtimes	
N15	Street Sweeping Private Streets and Parking Lots		There will be minimum traffic.
N16	Retail Gasoline Outlets		There will be no gasoline outlets

BMP maintenance will be provided per the O&M manual to make sure the underground detention basin is functioning as required. A spill contingency plan will be provided for the substation and battery equipment. The batteries will be LFP batteries. These batteries are made with a lithium iron phosphate (LiFePO4) cathode. The materials are non-toxic. Lithium iron phosphate is thermally and structurally stable meaning that it won't fluctuate during overcharge or short circuit conditions, or if handled incorrectly. LFP batteries are also incombustible, which makes these particular batteries the safest lithium chemistry to use in energy projects. LFP batteries contain no toxic or rare earth materials. Unlike other types of lithium batteries, the internal chemicals found within LFP batteries will not cause leakage that harms the environment.

The Los Angeles fire code will be followed and the site will be in compliance with Article 80 of the Uniform Fire Code. Employee training will be provided to any employee coming onto the site for maintenance or landscaping activities. As a part of the maintenance requirements for the site, catch basins will be inspected for build up of sediment or debris.

	Structural So	urce Co	ntrol Bl	MPs
	Name	Chec	k One	
Identifier		Included	Not Applicable	Reason Source Control is Not Applicable
S1	Provide storm drain system stenciling and signage			Site does not drain directly to the ocean.
S2	Design and construct outdoor material storage areas to reduce pollution introduction			No outdoor material storage areas will be onsite. All material will be hauled offsite.
S3	Design and construct trash and waste storage areas to reduce pollution introduction			Regular trash pick-up will occur.
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control			
S5	Protect slopes and channels and provide energy dissipation			
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)			
S6	Dock areas			No dock areas onsite.
S7	Maintenance bays			No maintenance bays onsite.
S8	Vehicle wash areas			No wash areas onsite.
S9	Outdoor processing areas			No processing areas onsite.
S10	Equipment wash areas			
S11	Fueling areas			Generators will require refueling.
S12	Hillside landscaping			
S13	Wash water control for food preparation areas			No food preparation onsite.
S14	Community car wash racks			No community car wash racks.

Section 5 BMP

5.1 BMPs in DMA 1 and 2

The onsite underground detention chambers will be used for the DMA onsite. The underground chambers will be lined with woven geotextile fabric between the foundation stone and chambers. This will allow infiltration into the groundwater. The post-development site plan can be found in Attachment E.

5.1.1 Structural LID BMP for DMA 1 and 2

The BMP is an underground detention chamber supplied by ADS. It is made up of several chambers within perimeter stone. The chambers are wrapped in a woven geotextile and have a layer of stone under the chambers. The ADS chambers can be seen in Attachment H.

The BMP selected at the site is an underground detention basin. The approximate area required for each drainage area for the chambers was determined by first calculating the area of one chamber. Using ADS' product drawings and dividing the system area by number of chambers, the total required area per drainage area was determined by multiplying the unit area by the number of adjusted required ADS chambers calculated earlier.

5.1.2 Structural LID BMP for Gen-Tie Pad Locations

Each Gen-Tie pad will manage stormwater runoff using shallow infiltration basins. The approximate area required for the infiltration basins was determined by taking the storage volume required for Drainage Area 1 and linearly scaling it down for a single pad. The calculations for the BESS pads were performed by Westwood, as seen in Attachment K. The provided area for each Gen-Tie pad location infiltration basin provides sufficient infiltration volume storage.

5.1.3 BESS Area Offsite Stormwater Management

Culverts will manage upstream offsite stormwater runoff throughout the overall project site. There are various culverts running beneath access driveways to the BESS, substation, and Gen-Tie pads. One existing 36" culvert allows runoff to flow south underneath Soledad Canyon Road towards the southern BESS. A manhole with an open grate will collect stormwater runoff at the downstream point of the existing 36" culvert. A new 60" storm sewer will be placed from the manhole to the downstream end of the site to convey upstream stormwater runoff from the BESS facilities. A hydraulic dissipator with riprap will be placed at the downstream site of the BESS facility. This can be seen on drawings ANG-CS-004 S011 and ANG-CS-004 S012.

A 72" culvert will also be placed to route stormwater runoff. A manhole with an open grate will collect stormwater runoff and be conveyed downstream to the south of the substation site. A hydraulic dissipator with riprap will be placed at the downstream site of the substation. Sizing of the culverts was calculated by Westwood. Calculations and figures with the locations of the structures can be seen in Westwood's Stormwater Management Report found in Appendix K.

5.2 Summary of LID BMPs

This data is a summary of the above discussion, as well as the calculation on Attachment H.

This table summarizes the calculation performed to linearly scale down the storage volume of drainage area 1 for an infiltration basin for a single Gen-Tie pad.

DA1 Area (Ac)	24 Ac
Vol. Calculated by Westwood (Ac-ft)	4.65 Ac-ft
Ratio of Area/Infiltration Volume	5.2
Gen-Tie Pad Size (Ac)	0.28 Ac
Gen-Tie Pad Infiltration Volume Required (ft ³)	2,325 ft ³
Depth of Infiltration Basin (ft)	2 ft
Area of Infiltration Basin (ft ²)	~1,200 ft ²

Г

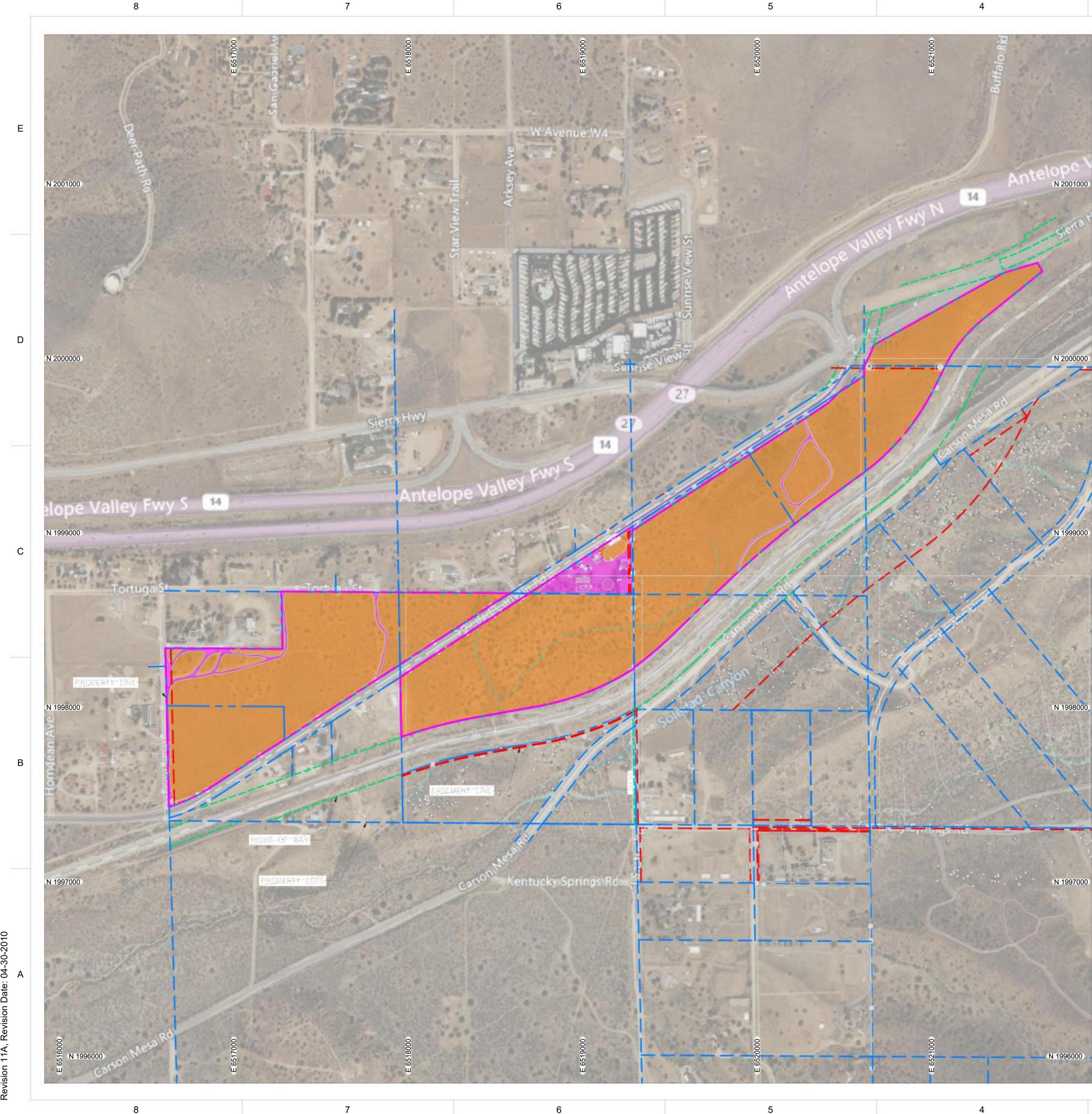
Section 7 Educational Materials Index

Edu	cationa	l Materials	
Residential Material (http://www.ocwatersheds.com)	Check If Applicable	Business Material (http://www.ocwatersheds.com)	Check If Applicable
The Ocean Begins at Your Front Door		Tips for the Automotive Industry	
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar	
Tips for the Home Mechanic		Tips for the Food Service Industry	
Homeowners Guide for Sustainable Water Use		Proper Maintenance Practices for Your Business	
Household Tips		Compliance BMPs for Mobile Businesses	
Proper Disposal of Household Hazardous Waste		Other Material	Check If
Recycle at Your Local Used Oil Collection Center (North County)			Attached
Recycle at Your Local Used Oil Collection Center (Central County)			
Recycle at Your Local Used Oil Collection Center (South County)			
Tips for Maintaining a Septic Tank System			
Responsible Pest Control			
Sewer Spill			
Tips for the Home Improvement Projects			
Tips for Horse Care			
Tips for Landscaping and Gardening			
Tips for Pet Care			
Tips for Projects Using Paint			

Attachment A: Educational Materials

LATER

Attachment B: Operations and Maintenance Plan

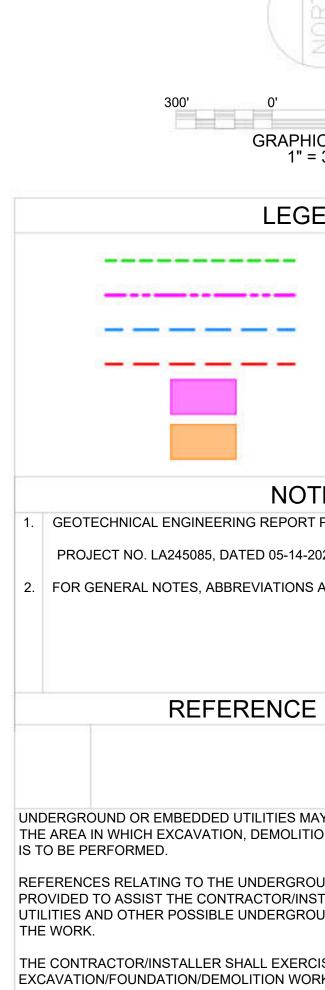

LATER

Attachment C: Site Overview

2	11		1	5	
		HOI	D INFORMATION]
	NO.		DESCRIPTION		
	CONTRACT		LLER SHALL TAKE AL		E
	APPROPRIA	TE PREC	AUTIONS TO ENSURE	THE	1
			PLE LOCATED ON THE NG CONTRACTOR'S/	Ξ	
CT OWNER: PRAIRIE SONG RELIABILITY PROJECT,	INSTALLER	S PERSO	NNEL (OR THAT OF IT		
CT ADDRESS: 1222 SOLEDAD CANYON RD ACTON, CA 93510-2402	SUB-CONTR	•)) PERFORMING THE ASE INFORMATION	WORK.	1
R'S ENGINEER: SARGENT AND LUNDY 55 E MONROE STREET	REV.	DATE	DESCRIP	TION	1
CHICAGO, IL 60603 ES SERVING PROJECT:	0A 2/2	24/2025	ISSUED FOR 30%		1
ETRIC - SOUTHERN CALIFORNIA EDISON ER - ON-SITE WELL	0B 3/3	31/2025	ISSUED FOR PERM	ΙΙΤ	
AGE - ON-SITE SEPTIC EPHONE AND CABLE - PACIFIC TELEPHONE & TELEGRAPH	0C 4/	4/2025	ISSUED FOR PERM	ит	
USE:	00 4/	4/2023	1330ED FOR FERI		
THIN 100' PLAN USE ZONING NORTH RL2 - RURAL LAND 2 A-1-2 LIGHT AGRICULTURAL		2/2025	ISSUED FOR PERM	IIT	
SOUTH RL5 - RURAL LAND 5 A-2-2 HEAVY AGRICULTURAL EAST RL2 - RURAL LAND 2 A-1-2 LIGHT AGRICULTURAL WEST RL2 - RURAL LAND 2 A-1-2 LIGHT AGRICULTURAL		16/2025	ISSUED FOR PERM	IIT	
S OF PROPOSED FACILITIES:				-	-
YARD AND PROJECT SUBSTATION - 2,056,142 SQFT	ISSUE PURI		ISSUED FOR PERMIT		D
WWN AREAS - 45,302 SQFT RIVE AREAS IN BESS YARDS TO BE PAVED QUIPMENT AREAS IN BESS YARDS TO BE GRAVEL	PROJECT N		15474.001		
HYARD TO BE CRUSHED ROCK THROUGHOUT			HAT THIS ENGINEERI		1
	MY DIRECT	PERSON	EPARED BY ME OR UI AL SUPERVISION AND)	
		-	CENSED PROFESSION TE LAWS OF THE STA		
	OF ENTER I				
			RELIMINARY PURPOS	250	
			YSAY, P.E.		
		NSE #E17	•		
	CEF	RT OF AUT	HORIZATION (WHEN	REQ'D)	С
	CAD FILE N		NG-SE-101_S002.DWG	· · · ·	1
	PREPARED				
	REVIEWED APPROVED		C/GM PPD		
			DR ADDITION TO THIS	;	
	DRAWING E SARGENT 8		GANIZATION OTHER T	HAN	
		,	SARGENT & LUNDY.		\vdash
			1		
	8	Sarg	ont & Lundy		
			GENT & LUNDY		
		55 EAS	ST MONROE STREET		В
	-	CHICAG	O, ILLINOIS 60603-578	80	
			PROJECT		=22
					1
		PR	AIRIE SONG		
			BILITY PROJEC	Т	
	-		RAWING TITLE		A
					1
		יי ספס		.1	
		гкUJ	ECT SITE PLAN	N	
' 500' 750'					1
GRAPHIC SCALE		DRAWING	NUMBER	REVISION	
RAWING SCALE		PSR-S	E-101	0E	
1" = 250'-0"	SHEET	2	OF 2		
2			1		
		10 A			

Attachment D: Pre-Development Site Conditions

9, ANSI (Imperial) Mi n Date: 04-30-2010 \$PINFO1\$ Form GDG-0401-01-09, / Revision 11A, Revision D

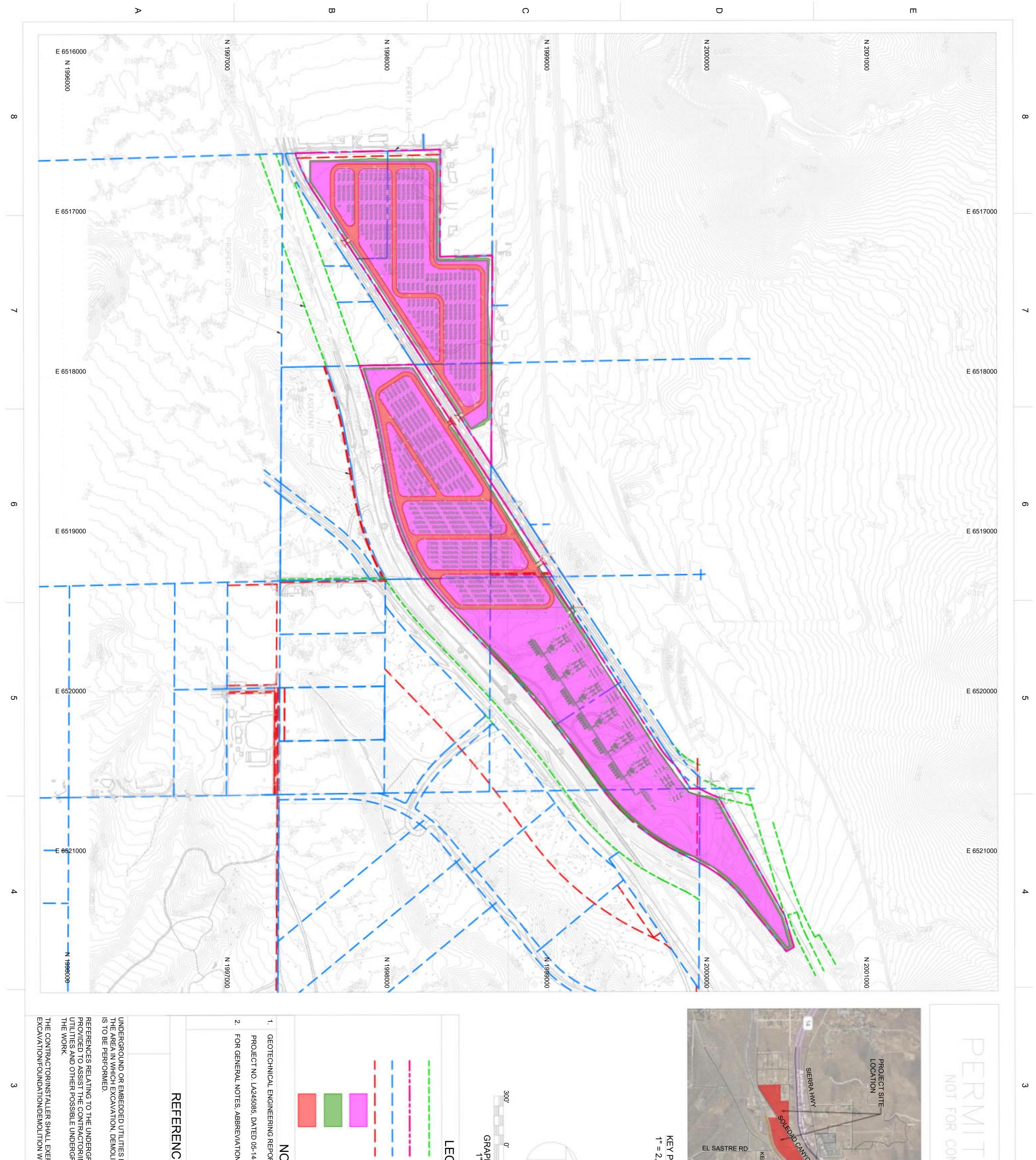

8

22

Δ

6

5



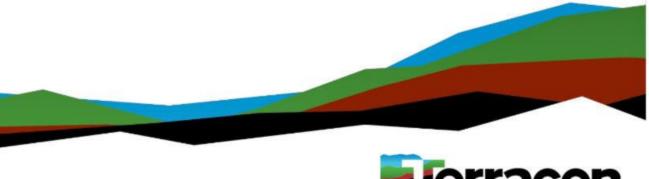
3 2			1		
	NO.	HO	LD INFORMATION DESCRIPTION		
RMIT ONLY					
DJECT SITE	APPRO SAFET WORK INSTAL SUB-CO	PRIATE PREC OF ALL PEO SITE, INCLUD LER'S PERSO NTRACTOR(S RELE	ALLER SHALL TAKE AL CAUTIONS TO ENSURE PLE LOCATED ON THI ING CONTRACTOR'S/ INNEL (OR THAT OF IT S)) PERFORMING THE EASE INFORMATION	E THE E S WORK.	E
MESA RD	REV. 0A	DATE 3/31/2025	DESCRIP	-	
IERRA HWY SOLEDAD CANYON RD CARSON MESA RD FORESTON DR	0B	5/16/2025	ISSUED FOR PERM	1IT	
KENTUCKY SPRINGS RD QX BXLSVS CVTE KOVA			ISSUED FOR PERMI	Т	D
ELS		ICATION: CT NO.:	- 15474.001		
KEY PLAN 1" = 2,000'	DOCUM MY DIR THAT I ENGINE	IENT WAS PR ECT PERSON AM A DULY LI	HAT THIS ENGINEERI EPARED BY ME OR UI AL SUPERVISION AND CENSED PROFESSION HE LAWS OF THE STA	NDER) NAL	
		JOS	R PRELIMINARY PURP HUA BICKETT LICENSE #95825	OSES	
NORH		E NAME: E	XHIBIT-PSR-001.DWG		С
			IP/CAF		1
300' 0' 300' 600'		VED BY: J ⁻ VED BY:	TP		
GRAPHIC SCALE 1" = 300'	ANY MO DRAWII SARGE	DIFICATION NG BY AN OR NT & LUNDY,	OR ADDITION TO THIS GANIZATION OTHER T		
LEGEND	NLOFU				
RIGHT OF WAY PROPERTY LINE PROPERTY LOTS EASEMENT			ent & Lundy		
IMPERVIOUS SURFACING DIRT SURFACING		55 EA	GENT & LUNDY ST MONROE STREET 60, ILLINOIS 60603-578	30	В
NOTES					
IICAL ENGINEERING REPORT PREPARED BY: TERRACON,					
NO. LA245085, DATED 05-14-2025. RAL NOTES, ABBREVIATIONS AND LEGEND SEE DRAWING PSR-CS-002.					
			PROJECT		
REFERENCE DRAWINGS	PRA	AIRIE SON	G RELIABILITY P	ROJECT	
		[DRAWING TITLE		A
OR EMBEDDED UTILITIES MAY BE LOCATED WITHIN OR ADJACENT TO HICH EXCAVATION, DEMOLITION, FOUNDATION, OR MODIFICATION WORK RMED. ELATING TO THE UNDERGROUND OR EMBEDDED UTILITIES ARE SSIST THE CONTRACTOR/INSTALLER IN THE FIELD LOCATING THOSE		PRE-DI	BESS EVELOPED PLA	۹N	
THER POSSIBLE UNDERGROUND OR EMBEDDED INTERFERENCES WITH		DRAWING	NUMBER	REVISION	1
OR/INSTALLER SHALL EXERCISE DUE CAUTION DURING ALL DUNDATION/DEMOLITION WORK.		EXHIBIT-		0B	
3 2	SHE	ET 1	OF 1		

Attachment E: Post Development Site Conditions

\$PINFO1\$ Form GDG-0401-01-09, ANSI (Imperial) MicroStation Border - Size D - 22 x 34 Revision 11A, Revision Date: 04-30-2010

r	HOLD		
	Ę		
SIERRAHMA	CONTRACTOR/INSTA APPROPRIATE PREC, SAFETY OF ALL PEOF WORK SITE, INCLUDII INSTALLER'S PERSOI SUB-CONTRACTOR(S	LLER SHALL TAKE ALL AUTIONS TO ENSURE THE PLE LOCATED ON THE NG CONTRACTOR'S/ NNEL (OR THAT OF ITS NNEL (OR THAT OF ITS NNEL (OR THAT OF ITS	m
ILESA RD	REV. DATE 0A 3/31/2025	ASE INFORMATION DESCRIPTION ISSUED FOR PERMIT	
KENTUCKY SPRINGS RD	0B 5/16/2025	ISSUED FOR PERMIT	
Calle ROJA	ISSUE PURPOSE: SPECIFICATION: PROJECT NO.: I HEREBY CERTIFY TI DOCUMENT WAS PRE MY DIRECT PERSON/ THAT I AM A DULY LIC ENGINEER UNDER TH OF CALIFORNIA.	ISSUED FOR PERMIT - 15474.001 HAT THIS ENGINEERING EPARED BY ME OR UNDER AL SUPERVISION AND CENSED PROFESSIONAL CENSED PROFESSIONAL HE LAWS OF THE STATE	
RTH	ISSUED FOR PR JOSHUA P.E. LIC	? PRELIMINARY PURPOSES HUA BICKETT LICENSE #95825	
300' 600' 1" = 300'	CAD FILE NAME: EXH PREPARED BY: MP/ REVIEWED BY: JTP APPROVED BY:	EXHIBIT-PSR-002.DWG MP/CAF JTP	¢
GEND RIGHT OF WAY	ANY MODIFICATION O DRAWING BY AN ORO SARGENT & LUNDY, I RESPONSIBILITY OF 3	N OR ADDITION TO THIS RGANIZATION OTHER THAN Y, IS NOT THE OF SARGENT & LUNDY.	
PROPERTY LINE PROPERTY LOTS EASEMENT	Serg	ent & Lundy	
IMPERVIOUS SURFACING GOOD GRASS CONDITION SURFACING ASPHALT SURFACING	SAR 55 EAS CHICAG	GENT & LUNDY ST MONROE STREET O, ILLINOIS 60603-5780	σ
OTES ORT PREPARED BY: TERRACON, 14-2025.			
		PROJECT	EABBREV\$
CE DRAWINGS	PRAIRIE SONG	RELIABI	
S MAY BE LOCATED WITHIN OR ADJACENT TO LITION, FOUNDATION, OR MODIFICATION WORK GROUND OR EMBEDDED UTILITIES ARE VINSTALLER IN THE FIELD LOCATING THOSE GROUND OR EMBEDDED INTERFERENCES WITH GROUND OR EMBEDDED INTERFERENCES WITH GROUND OR EMBEDDED INTERFERENCES WITH	POST D DRAWING	DRAWING TITLE BESS DEVELOPED PLAN S NUMBER -PSR-002 REVISION	.TE\$ \$TIME\$
Ν	SHEET 1	0₽ 1 1	\$D#

Attachment F: Geotechnical Report


Prairie Song Reliability Project

Geotechnical Engineering Report

May 14, 2025 | Terracon Project No. LA245085

Prepared for:

Prairie Song Reliability Project, LLC

Terracon.com

Facilities
 Environmental
 Geotechnical
 Materials

145 W Walnut St. Gardena, CA 90248 P (949) 261-0051 Terracon.com

March 25, 2025, revised April 11, 2025, May 14, 2025

Prairie Song Reliability, LLC Attn: Mr. E: Re: Geotechnical Engineering Report

Prairie Song Reliability Project Acton, Los Angeles County, California Terracon Project No. LA245085

Dear Mr. Lehman:

We have completed the scope of Geotechnical Engineering services for the above referenced project in general accordance with Terracon Proposal No. PLA245085 dated May 15, 2024, between Prairie Song Reliability, LLC and Terracon Consultants, Inc. (Terracon). This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of pavements and foundations for the proposed Battery Energy Storage Systems (BESS) and substation facility.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon

-anna Valdez

Janna Valdez, E.I.T. Senior Staff Engineer

Joshua R. Morgan, P.E. Department Regional Manager

Geotechnical Engineering Report

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Table of Contents

Introduction1
Project Description
Site Conditions
Geotechnical Characterization5
Subsurface Conditions 5
Lab Results
Groundwater
Seismic Site Class7
Faulting and Estimated Ground Motions10
Liquefaction
Corrosivity
Electrical Resistivity Testing
Thermal Resistivity Testing
Geotechnical Overview
Earthwork
Site Preparation15
Subgrade Preparation16
Excavation17
Site Slopes17
Fill Material and Placement
Compaction Requirements19
Utility Trench Backfill20
Grading and Drainage20
Exterior Slab Design and Construction
Earthwork Construction Considerations21
Construction Observation and Testing22
Shallow Foundations
Shallow Foundation Design Recommendations22
Lateral Earth Pressures
Design Parameters24
Deep Foundations
Drilled Shaft Design Recommendations25
Drilled Shaft Axial Loading25
Drilled Shaft Lateral Loading – LPILE Parameters
Drilled Shaft Construction Considerations27
Driven Pile Design Parameters29
Driven Piles Construction Considerations
Gravel-Surfaced Drives and Parking
Roadway Subgrades
Design Parameters
Access Road Sections

Geotechnical Engineering Report

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Roadway Design and Construction Considerations	32
Pavements	33
General Pavement Comments	33
Pavement Design Parameters	33
Pavement Section Thicknesses	
Pavement Drainage	34
Pavement Maintenance	34
General Comments	35

Figures

GeoModel

Attachments

Exploration and Testing Procedures Site Location and Exploration Plans Exploration and Laboratory Results Supporting Information

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **plerracon** logo will bring you back to this page. For more interactive features, please view your project online at **client.terracon.com**.

Refer to each individual Attachment for a listing of contents.

Introduction

This report presents the results of our subsurface exploration and Geotechnical Engineering services performed for the proposed Battery Energy Storage System (BESS) and Substation facility to be located north and south of Soledad Canyon Road in Acton, Los Angeles County, California. The purpose of these services was to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Groundwater conditions
- Seismic site classification per CBC
- Site preparation and earthwork
- Foundation design and construction
- Access roadway design and construction
- Infiltration design rates

The geotechnical engineering Scope of Services for this project included the advancement of test borings, electrical resistivity testing, laboratory testing, engineering analysis, and preparation of this report. The geotechnical engineering Scope of Services for our current scope of work included the following:

- Fifteen (15) soil test borings to approximately 21 to 51.5 below ground surface (bgs) in the proposed BESS areas
- Two (2) soil test borings to approximately 51.5 feet bgs in the proposed substation area
- Two (2) soil test borings to approximately 21.5 feet bgs in the proposed Operations and Maintenance (O&M) building area
- Seven (7) soil test borings to approximately 51.5 feet bgs along the transmission line
- Four (4) percolation tests at approximately 3 and 5 feet bgs in the proposed basin area
- Corrosion testing on soil samples obtained from seven (7) locations
- Field electrical resistivity tests at seven (7) locations
- Lab thermal resistivity testing on soil samples obtained from four (4) locations.

Drawings showing the site, borings, percolation testing, and electrical resistivity locations are shown on the **Site Location** and **Exploration Plan**, respectively. The results of the laboratory testing performed on soil samples obtained from the site during our field exploration are included on the boring logs and/or as separate graphs in the **Exploration Results** section.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Project Description

Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows:

Item	Description
Previous Submittals	A letter titled "Geotechnical Percolation Test Letter Prairie Song Reliability Project " was provided to Prairie Song Reliability Project, LLC by Terracon on January 22, 2025. The letter describes the percolation test procedures and results that was conducted by Terracon for the design of the proposed basin. Recommendations and limitations for stormwater management provided in the referenced letter remain valid and applicable for the proposed project except where superseded or identified herein.
Information Provided	An email request for proposal was provided by Matt McCaffrey on March 29, 2024. A site boundary Google Earth file and a conceptual site plan for the proposed BESS and substation was provided at the time of the request. Subsequently, a Google Earth file of the proposed overhead transmission line was provided on November 22, 2024.
Project Description	The project consists of a proposed BESS, substation, stormwater basin, O&M Building, two 40k gal water tanks (estimated to be 16 feet tall by 33 feet in diameter), and transmission line. Based on our review of the conceptual site plan, the project parcel will encompass an approximate footprint of 65 acres. The BESS and substation facility will encompass an approximate footprint of 35 and 6 acres, respectively. Furthermore, an approximately 2 miles overhead 500 kV transmission line will connect with the proposed substation.
Proposed Foundation Structure	We anticipate that the proposed BESS will consist of battery storage units supported by mat foundations, driven piles, or drilled shafts. We anticipate the substation will include control room building, self- contained structures, and other substation elements to be supported on shallow spread footings, equipment slabs-on-grade/mat foundations, and/or drilled shafts. We anticipate that the proposed O&M building and water tanks will be supported by a spread footing foundation system with concrete slabs on grade. We anticipate that the overhead transmission line will be supported on drilled shaft foundations.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Item	Description	
Grading/Slopes	 The site has a slight slope, on the order of 5%. We assume that site will be terraced, and minimal grading will be used to level the site. We anticipate that the battery containers, water tanks, an O&M building will generally follow the existing site grades with cut/fill on the order of 1 to 2 feet to bring the site to finished grades. We anticipate cut/fill on the order of 3 to 4 feet to bring the substation area to finish grade Furthermore, a 3H:1V to 5H:1V slope is located south of the southern perimeter of the site descending towards the existing to tracks and W Carson Mesa Road. We assume that the proposed structures will have a set setback distance, sufficient enough that slope stability analysis is not required for the site. Details of required setbacks are included in this report. 	
Infiltration System	We understand that an infiltration system consisting of an underground retention/detention basin will be planned on-site. A percolation test letter was provided previously.	
Access Roadways	We understand that access road cross sections used for construction of the project will be the responsibility of Prairie Song Reliability Project. We anticipate low-volume access roads will have a maximum vehicle load of 10,000 lbs. and will travel over the access roads only once per week during operation. Moreover, we anticipate all-weather access roads will be required to access the project substation. Such roads should be designed to support a firetruck weighing approximately 75,000 lbs. Furthermore, based on input from the client, approximately 80,000 to 90,000 lbs trucks and cranes will travel through the access roads every 5 years.	

Terracon should be notified if any of the above information is inconsistent with the planned construction, especially the grading limits, as modifications to our recommendations may be necessary.

Site Conditions

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Item	Description
Parcel Information	The project is located north and south of Soledad Canyon Road in Acton, Los Angeles County, California. The project site encompasses a total area of approximately 65 acres. The coordinates of the approximate center of the site are 34.4858° N, 118.1383° W.
Existing Improvements	The site is primarily in an undeveloped state, with several residential properties dispersed across the area. Located approximately 100 feet from the proposed BESS development, an existing railroad traverses parallel to the southern perimeter of the property.
Current Ground Cover	The majority of the surface of the site is covered by exposed soils with dense desert vegetation.
Existing Topography	The parcels north and south of Soledad Canyon Rd have an approximately 4% slope increasing from the southwest to the northeast direction. The approximate elevations of the site range from 2,980 to 3,140. The proposed transmission line will traverse flat terrains and rolling hill topographies and the elevation at the proposed towers ranges from 3010 to 3125 feet.

Geotechnical Characterization

Subsurface Conditions

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of the site. Conditions observed at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** and the GeoModel can be found in the **Figures** attachment of this report.

As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each boring location, refer to the GeoModel.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Model Layer	Layer Name	Consistency/Density
1	Sand with varying amounts of silt, clay, and gravel	loose to medium dense
2	Sand with varying amounts of silt, clay, and gravel	medium dense to very dense

The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

Lab Results

Laboratory tests were conducted on selected soil samples and the test results are presented in the **Exploration Results** section and on the boring logs. Atterberg limit test results indicate that the on-site soils generally have low plasticity or are non-plastic. Consolidation tests indicated that the silty sand soils encountered at an approximate depth of 5 feet bgs have a moderate collapse potential when saturated under normal footing loads of 2,000 psf. Maximum density/optimum moisture content testing conducted in accordance with ASTM D1557 (Modified Proctor) indicate that near surface soils tested have maximum dry densities ranging from 133.3 to 136.3 pounds per cubic feet (pcf) and optimum water contents ranging from 7.8 to 8.4 percent. California Bearing Ratio (CBR) testing of the near surface soils indicated a CBR value of 10. Direct shear testing results on sandy samples are tabulated below:

Boring ID	Depth (feet)	Description	Peak Friction Angle (°)	Peak Cohesion (psf)
BESS-4	5	Silty Sand	32°	130
BESS-8	10	Silty Sand	27°	600
BESS-14	5	Poorly Graded Sand with Silt	27°	260
TL-2	10	Silty Sand	42°	0
TL-3	2.5	Silty Sand	27°	350
TL-5	7.5	Silty Sand	35°	220
TL-6	5	Silty Sand	31°	240

Groundwater

The borings were advanced using a hollow-stem-auger technique that allowed short term groundwater observations to be made while drilling. Groundwater seepage was not encountered during drilling or for the short duration the boring remained open. These observations represent groundwater conditions at the time of field exploration and may not be indicative of other times, or at other locations.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than expected.

According to data collected from the Water Data Library for the State of California from a nearby well, located approximately 0.5 miles north of the site in State Well Number 05N12W28F001S, historic groundwater levels around November 30, 1965, were recorded at greater than 100 feet bgs.¹ Recent publicly available data (within the last 20 years) is not available within a 1-mile radius from the site boundary. As such, groundwater is not anticipated to occur within the depth of excavations or foundation installations at the site.

Seismic Site Class

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7.

Description	Value	
BESS Area		
2022 California Building Code Site Classification (CBC) ¹	C ²	
Site Latitude (°N)	34.4834	
Site Longitude (°W)	118.1383	
S _s Spectral Acceleration for a 0.2-Second Period	1.689	

¹ California Department of Water Resources.

⁽https://wdl.water.ca.gov/WaterDataLibrary/GroundWaterLevel.aspx?StateWellNumber=05N12W28F001S&Sit eCode=344881N1181435W001)

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Description	Value			
S ₁ Spectral Acceleration for a 1-Second Period	0.698			
Fa Site Coefficient for a 0.2-Second Period	1.2			
Fv Site Coefficient for a 1-Second Period	1.4			
TL-1				
2022 California Building Code Site Classification (CBC) ¹	C ²			
Site Latitude (°N)	34.4818			
Site Longitude (°W)	118.1378			
S _s Spectral Acceleration for a 0.2-Second Period	1.677			
S ₁ Spectral Acceleration for a 1-Second Period	0.692			
Fa Site Coefficient for a 0.2-Second Period	1.2			
F _v Site Coefficient for a 1-Second Period	1.4			
TL-2				
2022 California Building Code Site Classification (CBC) ¹	C ²			
Site Latitude (°N)	34.4808			
Site Longitude (°W)	118.1379			
S _s Spectral Acceleration for a 0.2-Second Period	1.668			
S ₁ Spectral Acceleration for a 1-Second Period	0.688			
Fa Site Coefficient for a 0.2-Second Period	1.2			
F _v Site Coefficient for a 1-Second Period	1.4			
TL-3				
2022 California Building Code Site Classification (CBC) ¹	C ²			
Site Latitude (°N)	34.4802			
Site Longitude (°W)	118.1350			
S _s Spectral Acceleration for a 0.2-Second Period	1.672			
S1 Spectral Acceleration for a 1-Second Period	0.69			
Fa Site Coefficient for a 0.2-Second Period	1.2			
F _v Site Coefficient for a 1-Second Period	1.4			
TL-4				
2022 California Building Code Site Classification (CBC) ¹	C ²			
Site Latitude (°N)	34.4802			
Site Longitude (°W)	118.1328			
S _s Spectral Acceleration for a 0.2-Second Period	1.681			

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Description	Value
S1 Spectral Acceleration for a 1-Second Period	0.694
Fa Site Coefficient for a 0.2-Second Period	1.2
Fv Site Coefficient for a 1-Second Period	1.4
TL-5	
2022 California Building Code Site Classification (CBC) ¹	C ²
Site Latitude (°N)	34.4832
Site Longitude (°W)	118.1322
S _s Spectral Acceleration for a 0.2-Second Period	1.71
S ₁ Spectral Acceleration for a 1-Second Period	0.707
Fa Site Coefficient for a 0.2-Second Period	1.2
Fv Site Coefficient for a 1-Second Period	1.4
TL-6	
2022 California Building Code Site Classification (CBC) ¹	C ²
Site Latitude (°N)	34.4823
Site Longitude (°W)	118.1278
S _s Spectral Acceleration for a 0.2-Second Period	1.719
S ₁ Spectral Acceleration for a 1-Second Period	0.711
Fa Site Coefficient for a 0.2-Second Period	1.2
Fv Site Coefficient for a 1-Second Period	1.4
TL-7	
2022 California Building Code Site Classification (CBC) ¹	C ²
Site Latitude (°N)	34.4846
Site Longitude (°W)	118.1332
S _s Spectral Acceleration for a 0.2-Second Period	1.719
S1 Spectral Acceleration for a 1-Second Period	0.711
Fa Site Coefficient for a 0.2-Second Period	1.2
	1.4

1. Seismic site classification in general accordance with the 2022 California Building Code.

2. The 2022 California Building Code (CBC) requires a site soil profile determination extending to a depth of 100 feet for seismic site classification. The current scope does not include the 100-foot soil profile determination. Borings were extended to a maximum depth of 51½ feet, and this seismic site class definition considers that similar or denser soils continue below the maximum depth of the subsurface exploration. It is an acceptable practice in Southern California to analyze the upper 50 feet and assume the lower 50 feet to be similar. Additional exploration to deeper depths would be required to confirm the conditions below the current depth of exploration.

Faulting and Estimated Ground Motions

The site is located in Southern California, which is a seismically active area. The type and magnitude of seismic hazards affecting the site are dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event. As calculated using the USGS Unified Hazard Tool, the fault which is considered to have the most significant effect at the site from a design standpoint and its maximum credible earthquake and proximity to the site are tabulated below:

Location	Fault	Magnitude	Distance (kilometers)
BESS and substation areas		7.82	8.71
TL-1A		7.92	7.96
TL-2	San Andreas (Mojave S)		
TL-3		7.94	8.02
TL-4		7.93	7.60
TL-5		7.93	8.60
TL-6		7.93	7.50
TL-7		7.93	7.51

Based on the USGS Design Maps Summary Report, using the American Society of Civil Engineers (ASCE 7-16) standard, the peak ground acceleration (PGA_M) at the project site is shown in the table below. In addition, based on the USGS Unified Hazard Tool, the mean magnitude at the project is also shown in the table below. Furthermore, the site is not located within an Alquist-Priolo Earthquake Fault Zone based on our review of the State Fault Hazard Maps.²

² California Geological Survey.

https://maps.conservation.ca.gov/cgs/informationwarehouse.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Location	PGAM	Mean Magnitude
BESS and substation areas	0.883	7.81
TL-1A	0.877	7.76
TL-2	0.873	7.76
TL-3	0.875	7.81
TL-4	0.879	7.9
TL-5	0.893	7.82
TL-6	0.898	7.82
TL-7	0.898	7.82

Liquefaction

Liquefaction is a mode of ground failure that results when a saturated soil loses substantial strength in response to earthquake shaking. Liquefaction is typically a hazard where loose sand or non-plastic silt soils exist below groundwater but may also occur with sensitive plastic silt or clay below groundwater. The California Geological Survey (CGS) has designated certain areas within the state as potential liquefaction hazard zones. These are areas considered at a risk of liquefaction-related ground failure during a seismic event, based upon mapped surficial deposits and the presence of relatively shallow groundwater.

The proposed BESS and substation are not located within a liquefaction hazard zone as designated by the CGS. However, a portion of the proposed transmission line is located within a liquefaction hazard zone. In particular, borings TL-1, TL-2, TL-3, TL-4 and TL-6 are located within a liquefaction hazard zone. As such liquefaction hazard analysis is included for the proposed T-line locations in the following section.

Liquefaction Analysis

Our explorations indicate the native soils encountered in exploratory borings generally consisted of loose to very dense sand to the maximum exploration depth of 51½ feet bgs. Groundwater was not encountered in borings while drilling and the recorded historical groundwater depth is more than 100 feet bgs.

To evaluate the presence of liquefiable soils and determine the amount of settlement of saturated/unsaturated soils during seismic shaking, we performed liquefaction analysis in accordance with the DMG Special Publication 117.

We utilized the software "LiquefyPro" by CivilTech Software, using soil from boring TL-2. A Peak Ground Acceleration (PGAM) of 0.873g and assumed a magnitude of 7.76 were used. Settlement analysis used the Tokimatsu, M-correction method. The fines percentage were corrected for liquefaction using the Idriss/Seed method. For this analysis a groundwater depth of 100 feet has been utilized.

Based on the depth to groundwater liquefaction hazard risk is considered low. Results and calculations for the liquefaction analysis are included in the **Supporting Documents** section of this report.

Seismic Settlement

Based on the calculation results, the seismically induced settlement of dry sands which typically occurred in the upper 5 to 10 feet is estimated to be on the order of 1¼ inch. Differential seismic settlement can be taken as one-half of the total seismic settlement.

Corrosivity

The table below lists the results of laboratory soluble sulfate, soluble chloride, electrical resistivity, and pH testing. The values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Boring	Sample Depth (feet)	Soluble Sulfate (mg/kg)	Sulfides (mg/kg)	Chloride (mg/kg)	Red-Ox Potential (mV)	Electrical Resistivity (Ω-cm)	рН
BESS-2	0-2	1.6	Nil	5.8	+278	10,250	7.1
BESS-8	0-2.5	9.7	Nil	7.7	+290	8,140	7.4
BESS-14	0-2.5	6.5	Nil	6.2	+282	5,230	7.7
SUB-2	0-2.5	4.1	Nil	6.6	+291	6,840	7.3
TL-1	0-5	9.2	Nil	6.5	+288	18,100	7.7
TL-3	0-5	2.4	Nil	6.5	+288	13,070	7.1
TL-6	0-5	0.2	Nil	5.4	+293	21,110	7.0

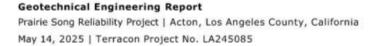
Results of soluble sulfate testing indicate samples of the on-site soils tested possess negligible sulfate concentrations when classified in accordance with Table 19.3.1.1 of the ACI Design Manual. Concrete should be designed in accordance with the exposure class S0 provisions of the ACI Design Manual, Section 318, Chapter 19.

Electrical Resistivity Testing

Terracon performed field measurements of soil electrical resistivity for the support of grounding design. Soil resistivity data was obtained from two test arrays at three (3)

locations each in the proposed BESS, one (1) location in the substation area, and at three (3) locations along the proposed transmission line for a total of seven (7) locations. At one of the test locations, ER-7, Terracon attempted to collect soil electrical resistivity readings, but the soil was too loose for electrode contact, and no repeatable readings were collected. The client was notified that no testing was obtained at this location. The approximate locations of the test arrays are shown in the **Exploration Plan**. Each testing was performed in general accordance with Wenner Array (4-pin) method per ASTM G57. This method was performed in with IEEE Standard 81, IEEE Guide for Measuring Earth Resistivity, Ground Impedance and Earth Surface Potentials of a Ground System. The test in the proposed locations included perpendicular arrays, North-South and East-West, with "a" spacings 2, 4, 6, 8, 12, 20, 30, 50, 70, 100, and 150 feet. For test locations in the BESS and substation areas, soil resistivity readings were also collected at 300 feet "a" spacing. The "a" spacing is generally considered to be the depth of influence of the test. The electrical resistivity test results are presented in **Exploration Results**.

Thermal Resistivity Testing


Terracon subcontracted Geotherm USA to perform laboratory thermal resistivity testing. Testing was conducted on four (4) bulk samples at the project site from a depth of 0 to 5 feet bgs. Three (3) samples were collected from the proposed BESS and one (1) sample was collected from the substation area. The tests were conducted on soil samples remolded to 90% (as determined by ASTM D1557) of the material's maximum dry density. Dry out curves targeted the higher of either the in-situ moisture content of the optimum moisture content as determined by ASTM D1557, totally dry condition, and two intermediate points. The thermal resistivity test results are presented in **Exploration Results**.

Geotechnical Overview

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings, provided that the recommendations provided in this report are implemented in the design and construction phases of this project.

We anticipate that the proposed BESS will consist of battery storage units supported by driven steel piles or mat foundations and other appurtenant electrical equipment supported on mat or drilled shaft foundations. We anticipate the substation structures will be supported on drilled piers or mat foundations. We anticipate that the proposed O&M building and water tanks will be supported on shallow concrete foundations.

We anticipate that the proposed transmission line will be supported by drilled shaft foundations.

To create a uniform bearing stratum, shallow concrete footings should bear on engineered fill extending to a minimum depth of 1 foot below the bottom of foundations, or 3 feet below existing grades, whichever is greater within the BESS, substation, and water tank areas. Grading should incorporate the limits of the overexcavation plus a lateral distance of 1 feet beyond the outside edge of perimeter footings.

The majority of the site indicates medium dense to very dense soils near the surface. However, potentially compressible soils, which show significant tendency for hydrocompaction when elevated in moisture content, will require particular attention in the design and construction near the O&M Building location. Within the O&M area we recommend engineered fill extend to a minimum depth of 3 feet below bottom of foundations or 5 feet below existing site grades.

Overexcavation and replacement is not required for support of drilled shaft or driven pile foundations.

Estimated movements described in this report are based on effective drainage for the life of the structure and cannot be relied upon if effective drainage is not maintained. Exposed ground, extending at least 10 feet from the perimeter, should be sloped a minimum of 5% away from the building to provide positive drainage away from the structure. Grades around the structure should be periodically inspected and adjusted as part of the structure's maintenance program.

Based on the findings summarized in this report, it is our professional opinion that the proposed construction will not be subjected to a hazard from settlement, slippage, or landslide, provided the recommendations of our report are incorporated into the proposed construction. It is also our opinion that the proposed construction will not adversely affect the geologic stability of the site or adjacent properties provided the recommendations contained in our report are incorporated into the proposed construction.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (presented in the **Exploration Results**), engineering analyses, and our current understanding of the proposed project. The **General Comments** section provides an understanding of the report limitations.

Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fills on the project. The recommendations presented for the design and construction of foundations are contingent upon following the recommendations outlined in this section.

Earthwork on the project should be observed and evaluated by a geotechnical engineer. If a geotechnical engineer other than Terracon is selected to perform the observations and testing during construction, they will assume the role of Geotechnical Engineer of Record. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation of bearing soils, and other geotechnical conditions exposed during construction of the project.

An on-site, pre-job meeting with the owner, the contractor and the Geotechnical Engineer should occur prior to all grading-related operations. Observation, testing, documentation, and reporting of the grading operation should be performed by the Geotechnical Engineer of Record. A final compaction report should be issued by the Geotechnical Engineer of Record at the completion of the grading operation. Interim reports may be issued according to project requirements. Operations undertaken at the site without the Geotechnical Engineer present may result in exclusions of affected areas from compaction reports for the project.

Grading of the subject site should be performed, at a minimum, in accordance with these recommendations and with applicable portions of the current version of CBC. The following recommendations are presented for your assistance in establishing proper grading criteria.

Site Preparation

Prior to placing fill, existing vegetation, debris, and other deleterious materials should be removed from proposed foundation and roadway areas. Exposed surfaces within these areas should be free of mounds and depressions which could prevent uniform compaction. The site should be initially graded to create a relatively level surface to receive fill and provide for a relatively uniform thickness of fill beneath proposed structures.

We recommend stripping topsoil to depths that expose soils with less than 3 percent organics and no roots having a diameter greater than 1/8 inch. While the depth of the unsuitable soils should be expected to vary, the thickness of the top soil layer may be estimated to range between 6 and 12 inches for construction budgeting purposes. The thickness of the top soil layer was not determined during our field exploration. Therefore, the actual depth of stripping should be verified by engineering observations made during the grading operations at the project. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

Stripped materials consisting of vegetation and organic materials should be wasted from the site or used to revegetate landscaped areas or exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.

Although no evidence of fills, utilities, or underground facilities such as septic tanks, cesspools, or basements was observed during the site reconnaissance, such features could

be encountered during construction. If unexpected fills, utilities, or underground facilities are encountered, such features should be removed, and the excavation thoroughly cleaned prior to backfill placement and/or construction.

Subgrade Preparation

The proposed structures may be supported by a shallow concrete foundation system bearing on engineered fill, driven piles, or drilled shafts foundation.

To create a uniform bearing stratum, shallow concrete footings should bear on engineered fill extending to a minimum depth of 1 foot below the bottom of foundations, or 3 feet below existing grades, whichever is greater within the BESS, substation, and water tank areas . Grading should incorporate the limits of the overexcavation plus a lateral distance of 1 feet beyond the outside edge of perimeter footings.

The majority of the site indicates medium dense to very dense soils near the surface. However, potentially compressible soils, which show significant tendency for hydrocompaction when elevated in moisture content, will require particular attention in the design and construction near the O&M Building location. Within the O&M area we recommend engineered fill extend to a minimum depth of 3 feet below bottom of foundations or 5 feet below existing site grades.

Overexcavation and replacement is not required for support of drilled shaft or driven pile foundations.

Large gravels and cobble materials may be encountered at proposed excavation depths. If such conditions are encountered, any cobbles or boulders should be removed and be replaced a minimum of 12 inches below foundation bearing depths with engineered fill.

Subgrade soils beneath proposed exterior slabs and roadways should be scarified to a minimum depth of 12 inches, moisture conditioned, and compacted. The moisture content and compaction of subgrade soils should be maintained until slab or roadway construction.

All exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of 10 inches, moisture conditioned as necessary, and compacted per the compaction requirements in this report. Compacted structural fill soils should then be placed to the proposed design grade and the moisture content and compaction of subgrade soils should be maintained until foundation or pavement construction.

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively workable; however, the workability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unworkable conditions develop, workability may be improved by scarifying and drying.

Excavation

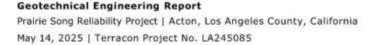
We anticipate that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. However, as excavations extend deeper into very dense soils additional excavation effort and larger equipment may be required. Very dense and gravelly soils was encountered in multiple borings. The owner should consider obtaining unit pricing for difficult excavations prior to the start of the project

The subgrade soils exposed during construction are expected to be relatively stable. However, the stability of the subgrade may also be affected by precipitation, repetitive construction traffic or other factors.

The bottom of excavations should be thoroughly cleaned of loose soils and disturbed materials prior to backfill placement and/or construction.

Onsite soils consist of cohesionless sandy soils. Such soils have the tendency to cave and slough during excavations. Therefore, formwork may be needed for foundation excavations.

Individual contractors are responsible for designing and constructing stable, temporary excavations. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.


Site Slopes

Based on the existing site grades, we expect that up to 10 feet of cut:fill with 2H:1V (horizontal:vertical) slopes will be placed around the site interior and boundary.

These new fill materials should possess a minimum friction angle of 32 degrees and cohesion of 100 psf from slope stability standpoint. For permanent slopes in compacted fill areas, recommended maximum configurations for on-site materials are as follows.

Maximum Slope Configuration (Height equal or less than 10 feet)		
Inclination Slope Treatment (horizontal:vertical)		
5:1 to 2:1	Re-vegetate	
More steep than 2:1	Stability analysis or structural retaining wall required	

We expect slopes with this configuration to be resistant to erosion and stable against circular failure. The face of all slopes should be compacted to the minimum specification for fill embankments. No tracking of fill material on the slope is allowed. Fill slopes can be over-built with compacted material and trimmed to final configurations. If any slope in

fill will exceed 20 feet in height, the grading design should include mid-height benches to intercept surface drainage and divert flow from the face of the embankment.

The Geotechnical Engineer of Record should be provided with proposed grading plans and cross sections and the anticipated height of fills and cuts for review prior to the start of construction. Based on preliminary analysis, placing up to 10 feet of new fill above the existing site soils to construct the BESS/Substation pads will result in estimated settlements of less than 1/2 inch. The majority of this settlement is expected to occur over a short period of time during the construction.

If fill is placed in areas of the site where existing slopes are steeper than 5H:1V, the area should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill.

If foundations are determined to be setback a distance less than H/2 or 15 feet (whichever is less for structures located below slope) or H/3 or 40 feet (whichever is less for structures located atop slopes), then the Geotechnical Engineer of Record should be notified as additional evaluations may be required.

Fill Material and Placement

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than six inches in size. Pea gravel or other open-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Clean on-site soils (provided they are screened for oversized particles with dimensions larger than 3 inches) or approved imported materials may be used as fill materials for the following:

- general site grading
- foundation backfill
- foundation areas
- roadway areas
- exterior slab areas

Imported soils for use as fill material within proposed structure areas should conform to low volume change materials as indicated in the following specifications:

	Percent Finer by Weight
Gradation	(ASTM C 136)
3"	
No. 4 Sieve	
No. 200 Sieve	40(max)
Liquid Limit	30 (max)

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

The contractor shall notify the Geotechnical Engineer of import sources sufficiently ahead of their use so that the sources can be observed and approved as to the physical characteristic of the import material. For all import material, the contractor shall also submit current verified reports from a recognized analytical laboratory indicating that the import has a "not applicable" (Class SO) potential for sulfate attack based upon current ACI criteria and is "mildly corrosive" to ferrous metal and copper. The reports shall be accompanied by a written statement from the contractor that the laboratory test results are representative of all import material that will be brought to the job.

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed 10 inches loose thickness.

Compaction Requirements

	Per the Modified Proctor Test (ASTM D 1557)			
Material Type and Location	Minimum Compaction	Range of Moisture Contents for Compaction Above Optimum		
	Requirement	Minimum	Maximum	
Approved on-site or imported fill soils:				
Beneath foundations ¹ :	90%	0%	+3%	
Utility trenches (structural areas) ¹ :	90%	0%	+3%	
Utility trenches (landscape areas):	90%	0%	+3%	
Fill greater than 5 feet in depth	95%	0%	+3%	
Exterior Slabs:	90%	0%	+3%	
Miscellaneous backfill:	90%	0%	+3%	
Aggregate base:	95%	0%	+3%	

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

 Upper 12 inches should be compacted to 95% beneath foundation, pavement, and structural areas. Lowvolume change imported soils should be used in lightly loaded equipment areas.

Utility Trench Backfill

We anticipate that the on-site soils will provide suitable support for underground utilities and piping that may be installed. Any soft and/or unsuitable material encountered at the bottom of excavations should be removed and be replaced with an adequate bedding material.

Trench excavation should not be conducted below a downward 1:1 projection from existing foundations without engineering review of shoring requirements and geotechnical observation during construction.

A non-expansive granular material with a sand equivalent greater than 30 should be used for bedding and shading of utilities, unless allowed or specified otherwise by the utility manufacturer.

On-site materials are considered suitable for backfill of utility and pipe trenches from 1 foot above the top of the pipe to the final ground surface, provided the material is free of organic matter and deleterious substances. Imported low volume change soils should be used for trench backfill in structural areas.

Trench backfill should be mechanically placed and compacted as discussed earlier in this report. Compaction of initial lifts should be accomplished with hand-operated tampers or other lightweight compactors. Where trenches are placed beneath footings, the backfill should satisfy the gradation and expansion index requirements of engineered fill discussed in this report. Flooding or jetting for placement and compaction of backfill is not recommended.

Grading and Drainage

All grades must provide effective drainage away from the proposed structures during and after construction and should be maintained throughout the life of the structure. Water retained next to the structures result in soil movements greater than those discussed in this report. Greater movements can result in unacceptable differential foundation movements causing cracked slabs and walls.

We recommend a minimum horizontal setback distance of 10 feet from the perimeter of any structure and the high-water elevation of the nearest storm-water retention basin.

Exterior Slab Design and Construction

Exterior slabs-on-grade, exterior architectural features, and utilities founded on, or in backfill may experience some movement due to the volume change of the backfill. To reduce the potential for damage caused by movement, we recommend:

Geotechnical Engineering Report Prairie Song Reliability Project | Acton, Los Angeles County, California

May 14, 2025 | Terracon Project No. LA245085

- minimizing moisture increases in the backfill;
- controlling moisture-density during placement of backfill;
- using designs which allow vertical movement between the exterior features and adjoining structural elements;
- placing effective control joints on relatively close centers

Earthwork Construction Considerations

Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of roadways. Construction traffic over the completed subgrades should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to roadway construction.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Should unstable subgrade conditions develop stabilization measures will need to be employed. Stabilization measures may include placement of aggregate base and multiaxial geogrid. Use of lime, fly ash, kiln dust or cement could also be considered as a stabilization technique. Laboratory evaluation is recommended to determine the effect of chemical stabilization on subgrade soils prior to construction.

We recommend that the earthwork portion of this project be completed during extended periods of dry weather if possible. If earthwork is completed during the wet season (typically November through April) it may be necessary to take extra precautionary measures to protect subgrade soils. Wet season earthwork operations may require additional mitigative measures beyond that which would be expected during the drier summer and fall months. This could include diversion of surface runoff around exposed soils and draining of ponded water on the site. Once subgrades are established, it may be necessary to protect the exposed subgrade soils from construction traffic.

The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current Occupational Safety and Health Administration (OSHA) excavation and trench safety standards.

Construction Observation and Testing

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, proof-rolling, placement and compaction of controlled compacted fills, backfilling of excavations to the completed subgrade.

The exposed subgrade and each lift of compacted fill should be tested, evaluated, and reworked, as necessary, as recommended by the Geotechnical Engineer prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 square feet of compacted fill in the structure areas and 5,000 square feet in roadway areas. Where not specified by local ordinance, one density and water content test should be performed for every 50 linear feet of compacted utility trench backfill. This testing frequency criteria may be adjusted during construction as specified by the geotechnical engineer of record.

In areas of foundation excavations, the bearing subgrade should be evaluated by the Geotechnical Engineer. If unanticipated conditions are observed, the Geotechnical Engineer should prescribe mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer's evaluation of subsurface conditions, including assessing variations and associated design changes.

Shallow Foundations

We anticipate that the proposed BESS and substation equipment, water tanks, and O&M building may be supported on either spread footings, slab-on grade, or mat foundations.

Recommendations for foundation for the proposed structures and related structural elements are presented in the following paragraphs.

If the site has been prepared in accordance with the requirements noted in **Earthwork**, the following design parameters are applicable for shallow foundations.

Shallow Foundation Design Recommendations

Item	Description
Foundation System	Spread footings, slab on grade, mat foundation
Maximum Net Allowable	3,000 psf up to 8 feet wide
Bearing Pressure	2,000 psf up to 14 feet wide

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Item	Description	
	Description	
(1-inch settlement) ^{1, 2}	1,500 psf up to 22 feet wide	
	1,250 psf up to 32 feet wide	
	1,200 psf up to 35 feet wide	
Required Bearing Stratum ³	 Engineered fill extending to a minimum of 1 foot below the bottom of foundations, or 3 feet below existing grade, whichever is greater for the BESS, substation, and water tank areas. Engineered fill extending to a minimum of 3 feet below the bottom of foundations, or 5 feet below existing grade, whichever is greater for the O&M building area. 	
Design Modulus of Subgrade Reaction, k ³	200 pounds per square inch per inch (psi/in) The modulus was obtained on estimates obtained from NAVFAC 7.1 design charts. This value is for a small-loaded area (1 sq.ft. or less) such as for forklift wheel loads or point loads and should be adjusted for larger loaded areas.	
Modulus Correction Factor ³	$k_c = k [(B+1)/2B)]^2$	
Minimum Embedment Below Finished Grade	18 inches	
Minimum Dimensions	Square footings and mats: 24 inches Strip footings: 18 inches	
Ultimate Passive Resistance ⁴	360 pcf	
Ultimate Coefficient of Sliding Friction ⁵	0.4	
Estimated Total Settlement from Structural Loads	About 1 inch	
Estimated Differential Settlement	About 1/2 of total settlement over a horizontal distance of 40 feet	

- The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. An appropriate factor of safety has been applied. These bearing pressures can be increased by 1/3 for transient loads unless those loads have been factored to account for transient conditions.
- Unsuitable or soft soils should be overexcavated and replaced per the recommendations presented in Earthwork.
- k values should be reduced to account for dimensional effects of largely loaded areas. Where ke is the corrected or design modulus value and B is the mat width in feet.

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Item

Description

- Use of passive earth pressures requires the footing forms be removed and compacted structural fill be placed against the vertical footing face. A factor of safety of 2.0 is recommended.
- Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions. A factor of safety of 1.5 is recommended.

Settlement calculations were performed utilizing Westergaard and Hough's methods³ to estimate the static settlement for various foundations widths with an allowable settlement of 1-inch.

Finished grade is defined as the lowest adjacent grade within five feet of the foundation for perimeter (or exterior) footings.

The allowable foundation bearing pressure applies to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of foundation concrete below grade may be neglected in dead load computations.

Foundation should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendation will be required.

Lateral Earth Pressures

Design Parameters

For engineered fill comprised of on-site soils or imported low volume change materials above any free water surface, recommended equivalent fluid pressure of unrestrained foundation elements are:

Item	Recommended Value
Active Case	31 psf/ft
Passive Case	390 psf/ft
At-Rest Case	47 psf/ft

³ FHWA Geotechnical Engineering Circular No. 6 – Shallow Foundations, FHWA – SA-02-054

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Coefficient of Friction

0.35

- 1. The values are based on engineered fill materials used as backfill.
- Uniform, horizontal backfill, compacted to at least 90% of the ASTM D 1557 maximum dry density, rendering a maximum unit weight of 125 pcf.
- Use of passive earth pressures require the sides of the excavation for the foundation to be nearly vertical and the concrete placed neat against these vertical faces or that the foundation forms be removed and compacted engineered fill be placed against the vertical foundation face.
- Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions.
- Passive pressure and sliding friction may be combined to resist sliding provided that either the passive pressure or frictional resistance (adhesion) is reduced by 50 percent.

The lateral earth pressures herein do not include any factor of safety and are not applicable for submerged soils/hydrostatic loading. Additional recommendations may be necessary if such conditions are to be included in the design.

Fill against foundation walls should be compacted to densities specified in the **Earthwork** section of this report. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers of other lightweight compactors.

Deep Foundations

Drilled Shaft Design Recommendations

Proposed substation and BESS electrical equipment and transmission line poles may be supported on drilled shaft piers. Total required embedment of the drilled shaft should be determined by the structural engineer based on structural loading and parameters provided in this report.

It should be noted that the transmission line borings were located in accessible areas, however there are rolling hills between the test locations. Subsurface conditions in these hills are anticipated to be more dense than what was encountered in the lower flat areas and may contain cobbles or shallow bedrock outcrops. The owner should consider getting unit rates for rock coring or difficult drilling costs associated with tower locations sited in the hills.

Drilled Shaft Axial Loading

Allowable skin friction and total capacity charts are attached to our **Supporting Information** section at the end of this report. The values presented for allowable side friction and end bearing include a factor of safety of 2.5.

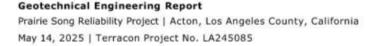
Drilled piers should have a minimum (center-to-center) spacing of three diameters. Closer spacing may require a reduction in axial load capacity. Axial capacity reduction can be determined by comparing the allowable axial capacity determined from the sum of

individual piers in a group versus the capacity calculated using the perimeter and base of the pier group acting as a unit. The lesser of the two capacities should be used in design.

The allowable uplift capacities should only be based on the side friction of the shaft; however, the weight of the foundation should be added to these values to obtain the actual allowable uplift capacities for drilled shafts. Tensile reinforcement should extend to the bottom of shafts subjected to uplift loading.

Drilled Shaft Lateral Loading – LPILE Parameters

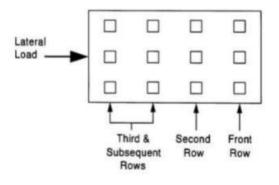
Based on our review of the subsurface conditions in the area of the substation, BESS and transmission line, our laboratory testing, and the Standard Penetration Test (SPT) results, engineering properties have been estimated for the soils conditions as shown in the following table. A depth of neglect based on anticipated disturbance, shrinkage, or scour during the design life off the piers should be considered due to utilities construction and grading around the piers. Due to potential for disturbance within the upper soils around the shaft, lateral and axial capacity of soils within the upper 2 feet should be neglected. This depth of neglect should be provided by the designer and verified by the civil engineer.


Recommended geotechnical parameters for lateral load analyses by others of drilled shaft foundations have been developed for use in the LPILE computer program. The following table summarizes input values for use in LPILE analyses. LPILE estimated values of k_h and

 \mathcal{E}_{50} may be used. Since deflection or a service limit criterion will most likely control lateral capacity design, no safety/resistance factor is included with the parameters.

	Stratigraphy ¹	L-Pile Soil		MFAD Modulus of Deformation (ksi)	γ' (pcf) ²
Layer	Depth Below Finished Grade (feet)	Model	φ(°) ²		
1	2	Sand	32	1.35	120
1	10	Sand	52	1.55	120
-	10	Grand	24	1.00	
2	20	Sand	34	1.98	110
-	20				
3	50	Sand	40	3.60	120
1. 2.	See Subsurface Profile in Geoter Definition of terms: \$\phi\$: Internal friction angle \$\phi\$ Effective unit weight	chnical Characterizat	tion for mo	ore details on Strati	graphy.

φ: Internal friction angle
 γ: Effective unit weight


The load capacities provided herein are based on the stresses induced in the supporting soil strata. The structural capacity of the shafts/piles should be checked to assure they can safely

accommodate the combined stresses induced by axial and lateral forces. Lateral deflections of shafts/piles should be evaluated using an appropriate analysis method, and will depend upon the pile's diameter, length, configuration, stiffness and "fixed head" or "free head" condition. We can provide additional analyses and estimates of lateral deflections for specific loading conditions upon request. The load-carrying capacity of shafts/piles may be increased by increasing the diameter and/or length.

When piers are used in groups, the lateral capacities of the piers in the second, third, and subsequent rows of the group should be reduced as compared to the capacity of a single, independent pier. Guidance for applying p-multiplier factors to the p values in the p-y curves for each row of pier foundations within a pier group are as follows:

- 1. Front row: Pm = 0.8
- 2. Second row: Pm = 0.4
- 3. Third and subsequent row: Pm= 0.3

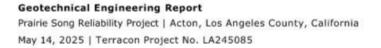
For the case of a single row of piers supporting a laterally loaded grade beam, group action for lateral resistance of piers would need to be considered when spacing is less than five pier diameters (measured center-to-center). However, spacing closer than 3D (where D is the diameter of the pier) is not recommended due to the potential for the installation of a new pier disturbing an adjacent installed pier, likely resulting in axial capacity reduction.

Drilled Shaft Construction Considerations

Due to presence of sandy soils, caving of soils within the drilled shaft excavations should be anticipated. We do not anticipate drilled shafts to extend below the depth of groundwater. However, if foundation concrete cannot be placed in dry conditions, a tremie should be used for concrete placement. Temporary steel casing will likely be required to properly drill and clean shafts prior to concrete placement. Gravelly soils were encountered in multiple borings on-site. Therefore, as drilled shafts extend below 10 feet, heavy duty rock bit or coring may be required to advance drilled shafts

The drilling speed should be reduced as necessary to minimize vibration and caving of the silty sand materials. The contractor should be prepared to use casing or other approved means to prevent caving. The contractor should review the boring logs to make sure they are familiar with the anticipated subsurface conditions prior to beginning construction of the deep foundations.

In the event drilled hole walls slough during drilling, temporary steel casing may be required to properly drilled shafts prior to concrete placement. We recommend the use of slurry drilling methods with polymers method to keep the solids in suspension during the drilling. Drilled shaft foundation concrete should be placed within 6 inches of the shaft base of the slurry-filled excavation immediately after completion of drilling and cleaning. The tremie should remain inserted several feet into the fresh concrete as it displaces the slurry upward and until placement is complete. The slurry should have a sand content no greater than 1% at the time concrete placement commences. The maximum unit weight of the slurry should be established in consultation with the Geotechnical Engineer.


As an alternative to temporary casing, the shaft excavation may be backfilled with a slurry mix in order to help stabilize sloughing sidewalls of the excavation, allowed to dry, and re-drilled through the backfill. The slurry mix design should be submitted to the Geotechnical Engineer for review and approval.

Drilled shaft foundation concrete should be placed immediately after completion of drilling and cleaning. Due to potential sloughing and raveling, foundation concrete quantities may exceed calculated geometric volumes.

If casing is used for drilled shaft construction, it should be withdrawn in a slow continuous manner maintaining a sufficient head of concrete to prevent infiltration of water or the creation of voids in shaft concrete. Shaft concrete should have a relatively high fluidity when placed in cased shaft holes or through a tremie. Shaft concrete with slump in the range of 6 to 8 inches is recommended.

Foundation concrete should be placed immediately after completion of drilling and cleaning. Closely spaced shafts should be drilled and filled alternatively, allowing the concrete to set at least eight hours before drilling the adjacent shaft. All excavations should be filled with concrete as soon after drilling as possible. In no event should shaft holes be left open overnight.

We recommend that all drilled shaft installations be observed on a full-time basis by an experienced geotechnical engineer in order to evaluate that the soils encountered are consistent with the recommended design parameters. If the subsurface soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required. The Geotechnical Engineer should observe the installation of drilled piers to verify the soil conditions and the diameter and depth of piers. Drilled piers should be constructed true and plumb.

Free-fall concrete placement in drilled piers will only be acceptable if provisions are taken to avoid striking the concrete on the sides of the hole or reinforcing steel. The use of a bottom-dump hopper, or an "elephant's trunk" discharging near the bottom of the hole where concrete segregation will be minimized, is recommended.

Drilled pier end bearing surfaces must be thoroughly cleaned prior to concrete placement. A representative of the Geotechnical Engineer should inspect the bearing surface and foundation pier configuration. If the subsurface soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

The contractor should check for gas and/or oxygen deficiency before any workers enter the excavation for observation and manual cleanup. All necessary monitoring and safety precautions as required by OSHA, State or local codes should be strictly enforced.

Driven Pile Design Parameters

Proposed battery storage units can be supported on driven steel W-section foundations (assumed to be W6x9 or similar) in general accordance with the following sections.

The design capacity of a single-driven pile is a function of several factors including:

- Size and type of pile;
- Type and capacity of pile installation equipment;
- Pile integrity after installation; and
- Engineering properties of the subsurface soils.

Based on specific conditions encountered on site, the soils are generally considered drivable for pile installation. The most effective means of verifying pile drivability and capacities for either tension or lateral loads is through pile load tests. Pile foundation design parameters have been based upon correlated capacities utilizing soil strength criteria determined from the soil borings and laboratory testing.

The tables below neglect a depth of 2 feet for axial and lateral resistance. This neglect is estimated based on our experience and accounts for depth of scour and/or disturbance from utilities near the piles. Depth of neglect should be verified and adjusted by the design engineer based on the scour analysis. Allowable capacities were based on a minimum factor-of-safety (FOS) of 2.0 for skin friction and 3.0 for end bearing

Description	<u>Top Depth</u> Bottom Depth	Total Unit Weight (pcf)	Allowable Compression Unit Skin friction (psf) ¹	Allowable Bearing Pressure (psf) ²
Charles 1	2	120	00	0.000
Stratum 1	10	120	90	8,000

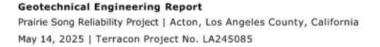
Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Description	<u>Top Depth</u> Bottom Depth	Total Unit Weight (pcf)	Allowable Compression Unit Skin friction (psf) ¹	Allowable Bearing Pressure (psf) ²
Churchurg 2	10	110	200	25.000
Stratum 2	20	110	300	25,000

Allowable uplift capacity is on the order of 70% of the compression capacity values in the table. The
values provided should be multiplied by the box perimeter of the pile times the depth. The box perimeter
is considered two times the width of the flange plus two times the depth of the web.

The values provided should be multiplied by the box area of the pile and be used for compression resistance only.

Recommended soil parameters for lateral load analysis of driven pile foundations have been developed for use in LPILE computer programs. Engineering properties have been estimated as outlined below:


Description	<u>Top Depth</u> Bottom Depth	Effective Unit Weight (pcf)	L-PILE/ GROUP Soil Type	¢ (°)
Stratum 1	1	120	Sand	32
Stratum I	10	120	Jana	52
Chapture 2	10	110	Sand	34
Stratum 2	20	110	Sallu	54

Driven Piles Construction Considerations

Based on the field exploration and laboratory testing, it is our opinion that the soils on the site are suitable for pile installation into native soils.

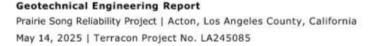
A geotechnical engineer should be engaged to make periodic observations of pile driving operations during construction. Each pile should be observed and checked for buckling, crimping and alignment in addition to recording penetration resistance, depth of embedment, and general pile driving operations.

As part of the overall quality control program, the time rate of installation (seconds per foot of embedment) should be recorded during production post driving. As a direct extension of the design process, additional "proof" testing should be performed on a representative number of production posts that do not meet the minimum installation rate criteria outlined in this report.

Gravel-Surfaced Drives and Parking

Roadway designs are provided for the traffic conditions and pavement life conditions as noted in the **Project Description** and in the following sections of this report. A critical aspect of pavement performance is site preparation. Roadway sections noted in this section are contingent upon the site being adequately prepared. Additionally, our recommendations are based on Chapter 4 Low-Volume Road Design found in AASHTO 1993.

Roadway Subgrades


For this analysis, the laboratory CBR value result of 10 was used.

Design Parameters

We understand unpaved access roads are planned throughout the site. The unpaved road sections for post-construction use have been developed under the following assumptions:

Aggregate Roadway Design Parameters			
Parameter	Design Value	Comments	
Traffic Loading	5,000 ESALs 1	Assumed	
Design Life	40 years	Assumed	
Design CBR	10	Assumed	
Resilient Modulus	11,150 psi (all-weather)	Based on CBR of 10	
Aggregate Base Elastic Modulus	36,000 psi	Assumed	
Allowable Rut Depth	2.0 inches	Assumed	
Design Serviceability Loss	2.5	Assumed	
Vehicle Tire Pressure	80 psi	Assumed	

1. ESAL = 18 kips Equivalent Single Axle Load

Access Road Sections

As a minimum, we recommend the following options for unpaved access roads:

Typical Unpaved Road Section -	Post Construction Traffic
Base Course Thickness (inches)	Traffic (ESALs)
51, 2	5,000

1. Minimum section thickness is anticipated to support fire trucks and pick-up trucks associated with on-going maintenance. Trucks containing heavy equipment may require localized repairs.

2. Base materials shall consist of Class II Base meeting requirements of the Caltrans Standard Specifications.

Roadway section should be constructed over a minimum of 12 inches of scarified, moisture conditioned, and compacted native soils to 95% of the maximum dry density using ASTM D1557. The recommended thicknesses should be measured after full compaction. The width of the roadway should extend a minimum distance of 1 foot on each side of the desired surface width.

Aggregate materials should conform to the specifications of Class II aggregate base in accordance with the requirements and specifications of the State of California Department of Transportation (Caltrans), or other approved local governing specifications.

Positive drainage should be provided during construction and maintained throughout the life of the roadways. Proposed roadway design should maintain the integrity of the road and eliminate ponding.

Roadway Design and Construction Considerations

Regardless of the design, un-surfaced roadways will display varying levels of wear and deterioration. We recommend an implementation of a site inspection program at a frequency of at least once per year to verify the adequacy of the roadways. Preventative measures should be applied as needed for erosion control and re-grading. An initial site inspection should be completed approximately three months following construction.

Preventative maintenance should be planned and provided for through an on-going management program to enhance future roadway performance. Preventative maintenance activities are intended to slow the rate of deterioration, and to preserve the roadway investment.

Surfacing materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of roadways to reduce lateral moisture transmission into the subgrade.

If rut depths become excessive as construction work progresses, re-grading and recompaction should be performed as necessary. Care should be taken to reduce or eliminate trafficking of the unpaved access road when the subgrade is wet as this will result in accelerated rutting conditions. Scarification, moisture treatment as necessary, and re-compaction of the roadways will likely be necessary as the roadways deteriorate.

Materials and construction of roadways for the project should be in accordance with the requirements and specifications of the California Department of Transportation or the applicable local governing body.

Pavements

General Pavement Comments

Based on input from the design team, the entrance to the substation will be paved with asphalt. Asphalt pavement designs are provided for the traffic conditions and pavement life conditions as noted in **Project Description** and in the following sections of this report. A critical aspect of pavement performance is site preparation. Pavement designs noted in this section must be applied to the site which has been prepared as recommended in the **Earthwork** section.

Pavement Design Parameters

A sample was tested for CBR at the site and resulted in a CBR value of 10. An equivalent R-value of 48 was considered and used to calculate the asphalt concrete pavement thickness sections. R-value testing should be completed prior to pavement construction to verify the design R-value.

The structural sections are predicated upon proper compaction of the utility trench backfills and the subgrade soil preparation as prescribed by in **Earthwork**, with the upper 12 inches of subgrade soils and all aggregate base material brought to a minimum relative compaction of 95 percent in accordance with ASTM D 1557 prior to paving. The aggregate base should meet Caltrans requirements for Class 2 base.

Assuming the pavement subgrades will be prepared as recommended within this report, the following pavement sections should be considered minimums for this project for the traffic indices assumed in the table below. As more specific traffic information becomes available, we should be contacted to reevaluate the pavement calculations.

Pavement Section Thicknesses

The following table provides our opinion of minimum thickness for AC sections:

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

Pavement Type	Recommended Pavement Section Thickness ¹ (inches)	
	TI = 5	TI = 7
Asphaltic Concrete ²	3 inches	4 inches
	3 inches Class II Aggregate Base	5 inches Class II Aggregate Base

 The individual and total material thickness values presented herein represent minimum thickness values, not averages.

2. All materials should meet the Caltrans Standard Specifications for Highway Construction.

These pavement sections are considered minimal sections based upon the expected traffic and the existing subgrade conditions. However, they are expected to function with periodic maintenance and overlays if good drainage is provided and maintained.

Subsequent to clearing, grubbing, and removal of topsoil, subgrade soils beneath all pavements should be scarified, moisture conditioned, and compacted to a minimum depth of 10 inches. All materials should meet the CALTRANS Standard Specifications for Highway Construction. Aggregate base materials should meet the gradation and quality requirement of Class 2 Aggregate Base (³/₄ inch maximum) in Caltrans Standard Specifications, latest edition, Sections 25 through 29.

Parking areas for heavy vehicles, concentrated turn areas, and start/stop maneuvers could require thicker pavement sections. Edge restraints (i.e. concrete curbs or aggregate shoulders) should be planned along curves and areas of maneuvering vehicles.

Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration. In addition, the pavement subgrade should be graded to provide positive drainage within the granular base section. Appropriate sub-drainage or connection to a suitable daylight outlet should be provided to remove water from the granular subbase.

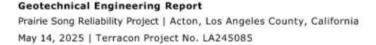
Pavement Maintenance

The pavement sections represent minimum recommended thicknesses and, as such, periodic upkeep should be anticipated. Preventive maintenance should be planned and provided for through an on-going pavement management program. Maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment. Pavement care consists of both localized (e.g., crack and joint sealing and

Prairie Song Reliability Project | Acton, Los Angeles County, California May 14, 2025 | Terracon Project No. LA245085

patching) and global maintenance (e.g., surface sealing). Additional engineering consultation is recommended to determine the type and extent of a cost-effective program. Even with periodic maintenance, some movements and related cracking may still occur, and repairs may be required.

Pavement performance is affected by its surroundings. In addition to providing preventive maintenance, the civil engineer should consider the following recommendations in the design and layout of pavements:


- Final grade adjacent to paved areas should slope down from the edges at a minimum 2%.
- Subgrade and pavement surfaces should have a minimum 2% slope to promote proper surface drainage.
- Install pavement drainage systems surrounding areas anticipated for frequent wetting.
- Seal cracks immediately.

General Comments

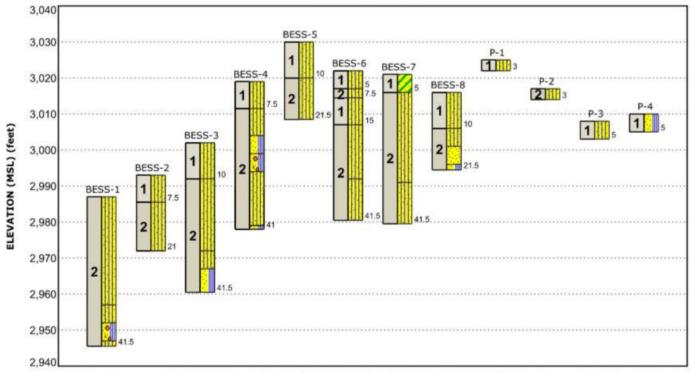
Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Geotechnical contractor should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials, or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for

third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

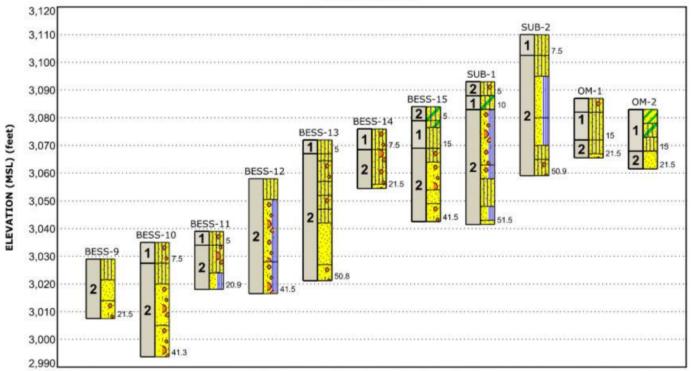
Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly effect excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety and cost estimating including excavation support and dewatering requirements/design are the responsibility of others. Construction and site development have the potential to affect adjacent properties. Such impacts can include damages due to vibration, modification of groundwater/surface water flow during construction, foundation movement due to undermining or subsidence from excavation, as well as noise or air quality concerns. Evaluation of these items on nearby properties are commonly associated with contractor means and methods and are not addressed in this report. The owner and contractor should consider a preconstruction/precondition survey of surrounding development. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.


Figures

Contents:

GeoModel

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

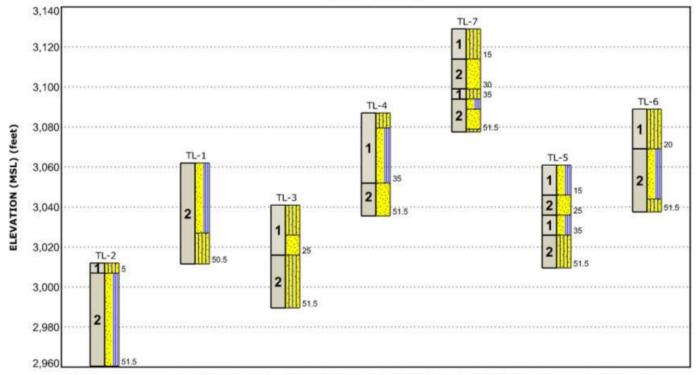

Model Layer	Layer Name	General Description	Leg	lend
1	Sand	Sand with varying amounts of silt, clay, and gravel; loose to medium dense	Silty Sand	Poorly-graded Sand with Silt and Gravel
2	Sand	Sand with varying amount of silt, clay, and gravel; medium dense to very dense	Poorly-graded Sand with Silt	1

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

GeoModel

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.


Model Layer	Layer Name	General Description	Leg	lend
1	Sand	Sand with varying amounts of silt, clay, and gravel; loose to medium dense	Silty Sand Poorly-graded Sand	Poorly-graded Sand
2	Sand	Sand with varying amount of silt, clay, and gravel; medium dense to very dense	with Gravel	Gravel Poorly-graded Sand with Silt and Gravel
			Silty Clayey Sand	Clayey Sand

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

GeoModel

This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

Model Layer	Layer Name	General Description	Legend
1	Sand	Sand with varying amounts of silt, clay, and gravel; loose to medium dense	Poorly-graded Sand Silty Sand
2	Sand	Sand with varying amount of silt, clay, and gravel; medium dense to very dense	Poorly-graded Sand

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

Attachments

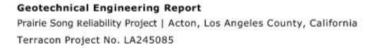
Geotechnical Engineering Report

Prairie Song Reliability Project | Acton, Los Angeles County, California Terracon Project No. LA245085

Exploration and Testing Procedures

Field Exploration

Number of Borings	Approximate Boring Depth (feet)	Location
15	21 to 51.5	Proposed BESS Area
2	51.5	Proposed Substation Area
2	21.5	Proposed O&M Building Area
4	3 and 5	Proposed Infiltration Area
7	50.5 and 51.5	Proposed Transmission Line


Boring Layout and Elevations: Terracon personnel provided the boring layout using handheld GPS equipment (estimated horizontal accuracy of about ± 10 feet) and referencing existing site features. Approximate ground surface elevations were estimated using Google Earth. If elevations and a more precise boring layout are desired, we recommend borings be surveyed.

Subsurface Exploration Procedures: We advanced the borings with a track-mounted drill rig using continuous hollow stem flight. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. Test samples were collected during drilling in general accordance with the appropriate ASTM methods using Standard Penetration Testing (SPT) and sampling using either standard split-spoon or Modified California samplers. A sampling spoon was driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration was recorded as the Standard Penetration Test (SPT) resistance value, also referred to as N-values. The N-values are indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer.

For safety purposes and as required by Los Angeles County, all borings were backfilled with grout after their completion.

We also observed the boreholes while drilling and at the completion of drilling for the presence of groundwater. Groundwater was not encountered at the time of drilling.

The sampling depths, penetration distances, and other sampling information was recorded on the field boring logs. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a Geotechnical Engineer. Our

exploration team prepared field boring logs as part of the drilling operations. These field logs included visual classifications of the materials observed during drilling and our interpretation of the subsurface conditions between samples. Final boring logs were prepared from the field logs. The final boring logs represent the Geotechnical Engineer's interpretation of the field logs and include modifications based on observations and tests of the samples in our laboratory.

Electrical Resistivity Testing: Soil electrical resistivity data was be obtained in accordance with ASTM G57 Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. At the test location, two near perpendicular lines was tested. Electrode "a" spacings are summarized in the following table. Electrode spacing was adjusted to conform to site conditions.

No. of Test Locations	Electrode "a" Spacing (feet)	Planned Location
7	2, 4, 6, 8, 12, 20, 30, 50, 70, 100, 150 and 300 feet	Proposed BESS and Substation Areas

Laboratory Testing

The project engineer reviewed the field data and assigned laboratory tests. The laboratory testing program included the following types of tests:

- Moisture Content
- Dry Unit Weight
- Atterberg Limits
- Compaction
- Swell Consolidation Test
- Direct Shear
- Corrosivity
- Thermal Resistivity
- California Bearing Ratio

The laboratory testing program often included examination of soil samples by an engineer. Based on the results of our field and laboratory programs, we described and classified the soil samples in accordance with the Unified Soil Classification System.

Site Location and Exploration Plans

Contents:

Site Location Plan Exploration Plan

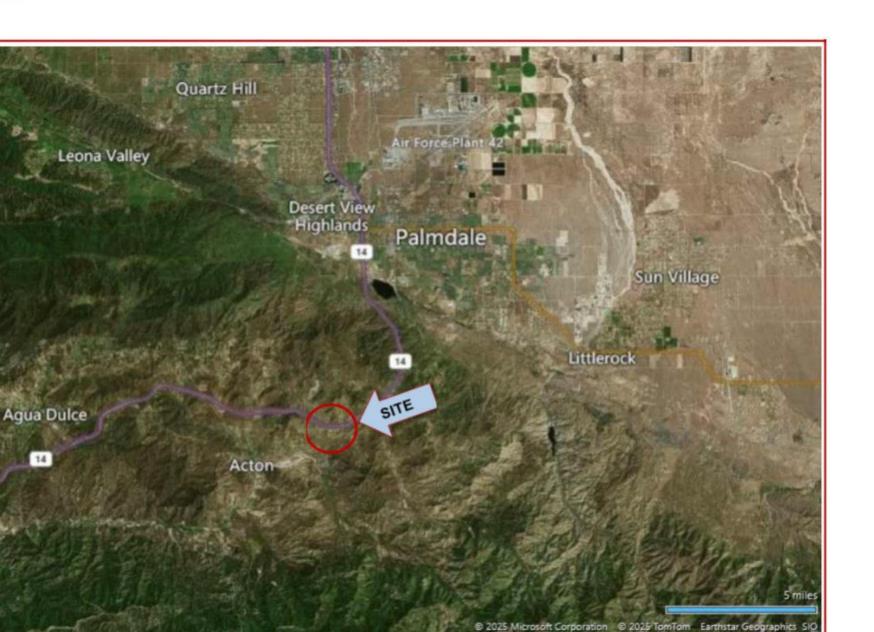
Site Location

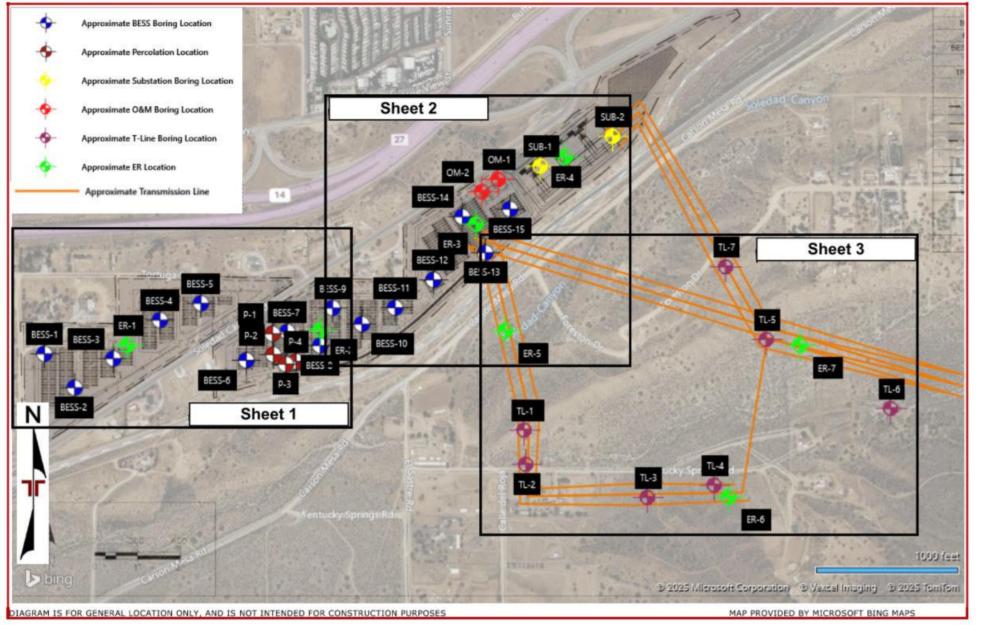
een Valley

N

bing

Elizabeth Lake

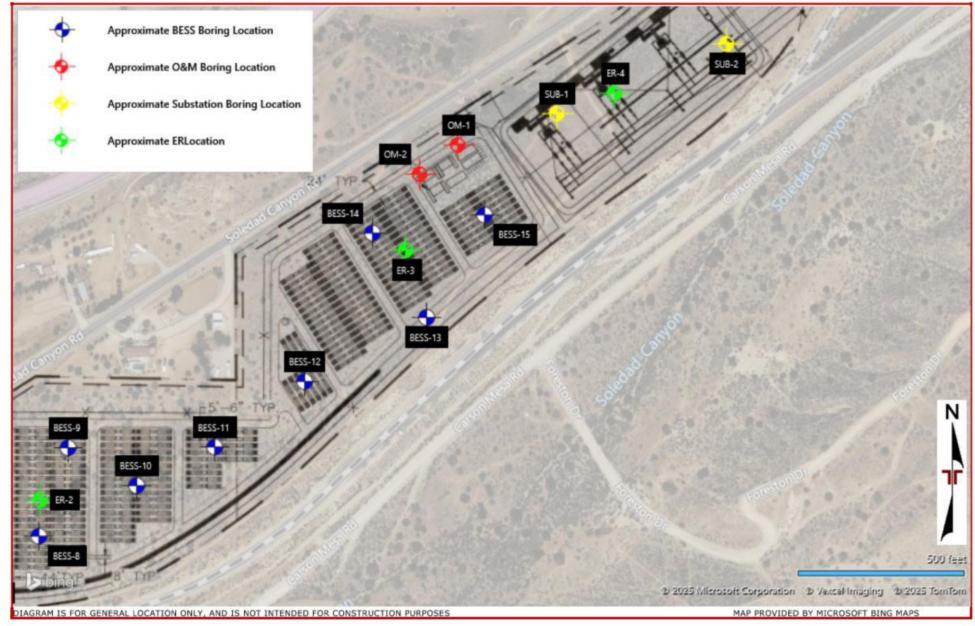



DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

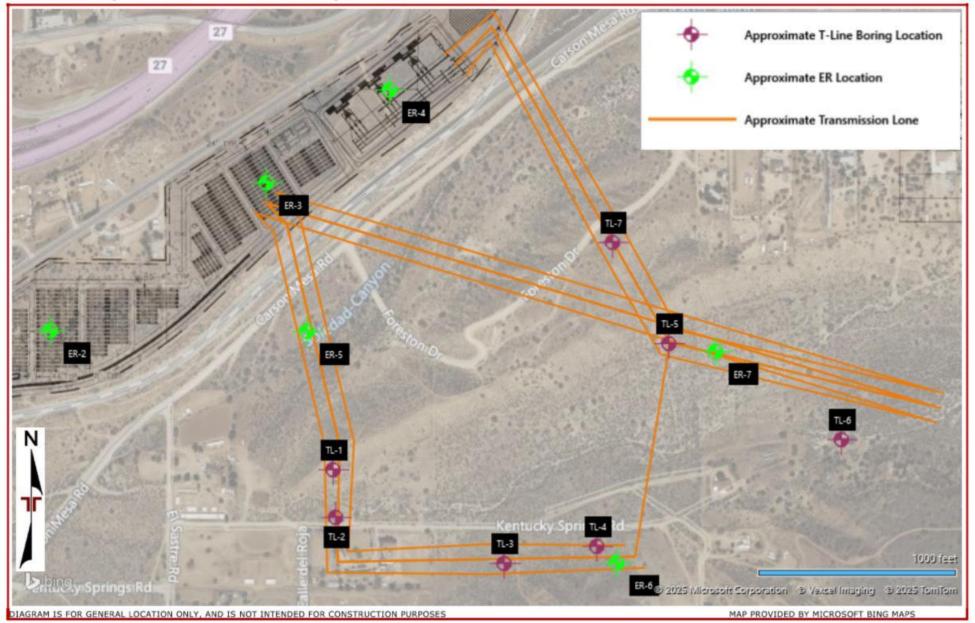
MAP PROVIDED BY MICROSOFT BING MAPS



Exploration Plan



Sheet 1 Exploration Plan - BESS and Substation Locations



Sheet 2 Exploration Plan - BESS and Substation Locations

Sheet 3 - Exploration Plan - T-Line Exploration Locations

Exploration and Laboratory Results

Contents:

Boring Logs Atterberg Limits Full Sieve Compaction Graphs Direct Shear Graphs Consolidation Results Corrosivity Results California Bearing Ratio Thermal Resistivity Testing Results Electrical Resistivity Results

a g	Location: See Exploration Plan	-	7 8	e	ب	(9)	5	Atterberg Limits	
Model Layer Graphic Log	Latitude: 34.4829° Longitude: -118.1491°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
2 0	Depth (Ft.) SILTY SAND (SM), trace gravel, light brown		>0			0	5		
	very dense	-		×	15-50/4"	2.3	119		32
		5-		X	15-39-30 N=69				
	dense	-		X	16-28-31	2.0	123		
	very dense	10-		X	16-23-30 N=53			20-17-3	25
		-							
2	medium dense	15-		X	10-21-33	0.9	109	9 0	
	very dense	- - 20- -		X	14-25-26 N=51				
	brown	- - 25- -		X	17-29-35 N=64	-			
	30.0								
See Suppo	ration and Testing Procedures for a description of field and laboratory s used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Water Level Ob Groundwal						Drill Rig D-50 Hammer Typ Automatic	æ
Notes		Advancement Method Hollow Stem Auger						Driller Terracon Logged by AT	
		Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite Boring Complexity States and States							

er	6c	Location: See Exploration Plan		~	20 20	e	4	(9)	Ĵ.	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 34.4829° Longitude: -118.1491°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	HALF & TOWNED	Percent Fines
lodel	iraph			epth	Vater bserv	ampl	Field Res	Wa	Dry leigh	LL-PL-PI	Fir
2	0	Depth (Ft.)			>0	S		0	\$		
		SILTY SAND (SM), brown, very dense				М	23-27-33 N=60				
				_		Δ	N=60				
				10							
				-							
		35.0 POORLY GRADED SAND WITH SILT (SP-SM), trace gravel and light brown, very dense	clay,	35-		\checkmark	22-29-36				
2		light brown, very dense		1		Å	N=65				
				-							
				-							
				-							
		40.0 SILTY SAND (SM), trace gravel, brown, very dense		40-			20.25.25				
		41.5				Х	20-25-26 N=51				
		Boring Terminated at 41.5 Feet									
				25335							
See	Explor	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any).	Water Les Gro				ountered			Drill Rig D-50	
		rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth								Hammer Typ Automatic	e
eles	actual P	Construction of the second of								Driller	
Not	es		Advancen Hollow Ste			1				Terracon	
										Logged by AT	
			Abandon				C. Marca and J.	a bio a th		Boring Starts 12-24-2024	bd
			boring bac	.knied	with A	uger	Cuttings and/or Be	ntonite		Boring Comp 12-24-2024	leted

Model Layer Graphic Log	Location: See Exploration Plan Latitude: 34.4823° Longitude: -118.1484° Depth (Ft.)	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits LL-PL-PI	Percent Fines
1	SILTY SAND (SM), reddish brown medium dense brown			1993 1993	6-8-8 N=16 11-17-20	2.1	119		
2	dense				9-14-18 N=32 28-38-42	0.7	118	•	26
	very dense 21.0 Boring Terminated at 21 Feet	- - - 20-		X	9-15-17 N=32 34-50/6"	1.8	106		
See Supp	pration and Testing Procedures for a description of field and laboratory es used and additional data (If any). orting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Water Level Ob Groundwal Advancement M Hollow Stem Aug Abandonment M Boring backfilled	ter not lethoo er 4ethoo	t enco d	untered			Drill Rig D-50 Hammer Typ Automatic Driller Terracon Logged by JB Boring Starto 01-08-2025	

/er	n Location: See Exploration Plan		la si	be		(%	76	Atterberg Limits	
Model Layer Granhic Log	Latitude: 34.4828° Longitude: -118.1475°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
2 0	Depth (Ft.)	0	>0	S		0	5		
	SILTY SAND (SM), trace gravel, light brown	_							
1	medium dense			X	11-15-18	2.7	122		
				\mathbf{X}	10-11-12 N=23 11-11-17	1.6	117		
_	10.0 dense	10-		X	15-16-23 N=39				
		-			11-55				
	very dense	15- - -		X	23-38-50/5"	1.2	122		
2	dense	- 20-		Х	14-16-19 N=35				
		- 25- -		Х	16-20-27 N=47				
	30.0	-							
	Investing Procedures for a description of field and laboratory res used and additional data (If any).	Water Level Ob Groundwa				-		Drill Rig D-50	<u> </u>
	n Reference: Elevations obtained from Google Earth								æ
Notes		Advancement Method Hollow Stem Auger						Driller Terracon Logged by AT	
		Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite						Boring Start 12-24-2024 Boring Comp 12-24-2024	

er	бc	Location: See Exploration Plan		~	78 22	ed		(%)	6	Atterberg Limits	-75.62	
Model Layer	Graphic Log	Latitude: 34.4828° Longitude: -118.1475°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines	
Mode	Grap			Depti	Water	Samp	Field	Conte	Neigh	LL-PL-PI	Per	
~		Depth (Ft.)		-	-0	,		Ŭ				
		SILTY SAND (SM), brown, very dense		-		Х	19-28-38 N=66					
				_		\sim						
				-								
		35.0		35-								
2		POORLY GRADED SAND WITH SILT (SP-SM), trace gravel, brou dense	wn, very	-		М	23-25-27 N=52					
				_		\sim						
				_								
				40-								
		light brown		-10		Х	26-36-46 N=82					
		41.5 Boring Terminated at 41.5 Feet				()			_			
See	Explor	ation and Testing Procedures for a description of field and laboratory sused and additional data (If any).	Water Le				ountered			Drill Rig D-50		
See	Suppo	rting Information for explanation of symbols and abbreviations.	0.0							Hammer Typ	e	
Elev	ation F	Reference: Elevations obtained from Google Earth								Automatic Driller		
Not	es		Advancer Hollow Ste			1				Terracon		
nonow										Logged by AT		
			Abandoni				Cuttings and/or Ba	ntonito		Boring Starte 12-24-2024	d	
							oring backfilled with Auger Cuttings and/or Bentonite					

Ъ	5	Location: See Exploration Plan						6	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 34.4836° Longitude: -118.1464°	Danth (Ft.)	Water Level	Observations Samula Tuna	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		Depth (Ft.) SILTY SAND (SM), reddish brown		-	+		+			
		medium dense			len l	8-9-9			18-15-3	18
1				-	Y	N=18				
			5	5-		11-18-17	2.5	121		
		7.5 dense		-	\geq	14-29-30 N=59				
			1	0-		23-43-50/5"	4.6	118		
			1							
2		POORLY GRADED SAND WITH SILT (SP-SM), brown, dense			2	6-14-18 N=32			NP	11
	0000	20.0 POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense	light brown,2	0-		35-50/4"	2.7	104		
		25.0		-						
		SILTY SAND (SM), brown, very dense	2	5-	Σ	26-50/5"				
		30.0	2	-						
		T ration and Testing Procedures for a description of field and laboratory s used and additional data (If any). Inting Information for explanation of symbols and abbreviations.	Water Level	Obser		ns ncountered			Drill Rig CME-75	
		Reference: Elevations obtained from Google Earth							Hammer Typ Automatic	e
		Advancemer Hollow Stem		hod				Driller 2R Logged by JB		
			Abandonme Boring backfil	nt Met lled wit	thod th Aug	er Cuttings and/or B	entonite		Boring Start 01-08-2025 Boring Comp 01-08-2025	

er	ő	Location: See Exploration Plan	~	78 2	e	÷	(%	6	Atterberg Limits	- 175.07
Model Layer	Graphic Log	Latitude: 34.4836° Longitude: -118.1464°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
lode	Graph		Depti	Nater	Samp	Field	Onte	Veigh	LL-PL-PI	Per
~		Depth (Ft.)	-	-0				>		
		SILTY SAND (SM), trace gravel, brown, very loose			M	17-34-37 N=71				
					P	N=71				
				1						
				1						
2			35	1	X	32-50/6"				
				1	P	-				
				-						
				1						
				-						
		40.0 POORLY GRADED SAND WITH SILT (SP-SM), brown, very der	40	-		20.50/61				
		41.0 Boring Terminated at 41 Feet		+	\square	28-50/6"	<u> </u>			
		borning remininated at 42 reet								
See	Explor	ation and Testing Procedures for a description of field and laboratory	Water Level O						Drill Rig CME-75	
		used and additional data (If any). rting Information for explanation of symbols and abbreviations.	Groundw	ater no	it end	ountered			Hammer Typ	
Elev	ation F	Reference: Elevations obtained from Google Earth							Automatic	-
Not	es		Advancement		d				Driller 2R	
			Hollow Stem Au	iger					Logged by	
									Boring Starte	bd
			Abandonment Boring backfille	d with	Auger	Cuttings and/or Be	ntonite		01-08-2025	
									Boring Comp 01-08-2025	reced

눎	5	Location: See Exploration Plan		_ 0	æ			G	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 34.4839° Longitude: -118.1454°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
2	0	Depth (Ft.)		>0	^o		0	\$		
		SILTY SAND (SM), brown	-							
		medium dense			¥	8-16-19	1.5			17
			- 5 -		Ť	0.00.02	1.0			
1			-		М	6-9-10 N=19				
					X	6-9-17	1.9	104		
		10.0 very dense	10-							
			-		Д	20-32-35 N=67				
		dense	15-		_		-			
2					à	18-26-29	2.8	121	-	
			-							
			20-			12-15-17				
		21.5 Boring Terminated at 21.5 Feet		1	Д	N=32	-			
		boning reminiated at 21.5 Feet								
proc	edures	I ration and Testing Procedures for a description of field and laboratory s used and additional data (If any).	Water Level Ob Groundwa				1		Drill Rig 6-Tech	
		rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth							Hammer Typ Automatic	не
Not	es		Advancement M Hollow Stem Aug	letho er	d				Driller Terracon Logged by	
			Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite					Boring Start 01-06-2025 Boring Comp 01-06-2025		

Model Layer	Graphic Log	Location: See Exploration Plan Latitude: 34.4828° Longitude: -118.1444° Depth (Ft.)	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Atterberg Limits LL-PL-PI	Percent Fines
1		SILTY SAND (SM), light brown, trace gravel medium dense	-		@Z	5-9-13				
_		5.0 brown, dense	5		X	N=22	6.2	106	•	
2		7.5 light brown, medium dense	-		X	6-8-10 N=18				
1			10-		X	11-18-20	1.0			
		15.0 dense	- 15-		X	16-21-22 N=43				
			- - - 20-			16-21-24				
2			-			16-21-24 N=45			NP	16
			25		X	24-50/6"	1.4	111		
		30.0								
proce See S Eleva	edures Suppo ation F	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any). rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Water Level Ob Groundwa	ter no	t enco				Drill Rig 6-Tech Hammer Typ Automatic Driller	e.
Note	5		Hollow Stem Auger Log JB Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite						Terracon Logged by JB Boring Start 01-06-2025 Boring Comp 01-06-2025	

er	6c	Location: See Exploration Plan		~	28 20	e	4	(0)	Ĵ.	Atterberg Limits	-775.02
Model Layer	Graphic Log	Latitude: 34.4828° Longitude: -118.1444°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
lodel	raph			epth	Vater	ampl	Field Res	Wa	Dry	LL-PL-PI	Fir
Σ		Depth (Ft.)		۵	>0	Ś		Ŭ	8		
		SILTY SAND (SM), light brown, very dense				V	18-35-36 N=71		°		
				-		Δ	N=71				
				10							
				-							
				-							
				35-			20-29-22				
2				10		Å	N=51				
				-							
				<u></u>							
				-							
		dense		40-							
		41.5		-		Х	13-13-19 N=32				
		Boring Terminated at 41.5 Feet									
			NOD AND AND AND AND	2-3-5							
See	Explor	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any).	Water Les Gro				i ountered			Drill Rig 6-Tech	
		rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth								Hammer Typ Automatic	e
LICY.	and the second second	an an ann an ann an ann an ann ann ann								Driller	
Note	es		Advancement Method Hollow Stem Auger						Terracon		
										Logged by JB	
			Abandon	ment M	letho	t	Cuttings and/or Be	ntonito		Boring Starte 01-06-2025	d
			borning bac	anneu	THE P	ager	carringa and/or De			Boring Comp 01-06-2025	leted

		Location: See Exploration Plan						C	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 34.4834° Longitude: -118.1434°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	Limits LL-PL-PI	Percent Fines
-		Depth (Ft.) CLAYEY SAND (SC), trace gravel, light brown		-0			Ļ			
1		medium dense	-		X	19-23-33	2.2	125	27-15-12	31
		5.0 SILTY SAND (SM), trace gravel, brown, dense	5		M	18-21-29				
		medium dense	-			N=50		105		
			-			10-26-25	1.1	106		
		dense	10-		X	15-19-23 N=42				
			-							
		very dense	- 15-		_	31-50/5"	2.1	118		
2			-			51 50/5		110		
			-							
			20-		X	21-31-38 N=69				
			25-		X	26-28-38 N=66				
						M(2)(17-22))				
		30.0								
prod See	Suppor	ation and Testing Procedures for a description of field and laboratory used and additional data (If any). rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Water Level Ob Groundwa						Drill Rig D-50 Hammer Typ	e.
Not		and and a second optimical from dougle cards	Advancement M Hollow Stem Aug		1				Automatic Driller Terracon Logged by	
			Abandonment I Boring backfilled			Cuttings and/or B	entonite		AT Boring Start 12-23-2024 Boring Comp 12-23-2024	

er	60	Location: See Exploration Plan		~	78 20	be		(%)	<u>_</u> 6	Atterberg Limits	1000
Model Layer	Graphic Log	Latitude: 34.4834° Longitude: -118.1434°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)		Percent Fines
Mode	Grap			Depti	Water	Samp	Field	Conte	Neigh	LL-PL-PI	Fil
~		Depth (Ft.)		-	-0	,		Ŭ			
		SILTY SAND (SM), trace gravel, brown, very dense		-	8	Х	21-26-36 N=62				
				_		4	Vic.44527-5				
				_	8						
				_							
				35-							
2				-		Х	20-35-38 N=73				
				-							
				<u>_</u>	8						
				-	8						
				40-			20.27.45				
		41.5		-		Д	30-37-45 N=82				
		Boring Terminated at 41.5 Feet									8R
See	Explor	ation and Testing Procedures for a description of field and laboratory used and additional data (If any).	Water Lev Grou				ountered			Drill Rig D-50	
See	Suppo	rting Information for explanation of symbols and abbreviations.			en 1773		1001072199231			Hammer Type	e
clev	ation F	Reference: Elevations obtained from Google Earth								Automatic Driller	
Not	es		Advancen Hollow Ste			1				Terracon Logged by	
										AT	
			Abandonn Boring bac				Cuttings and/or Be	ntonite		Boring Starte 12-23-2024	d
			Boring backfilled with Auger Cuttings and/or Bentonite							Boring Comp 12-23-2024	leted

5	ŋ	Location: See Exploration Plan		~		æ			e G	Atterberg Limits		
Model Layer	Graphic Log	Latitude: 34.4831° Longitude: -118.1427°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines	
		Depth (Ft.) SILTY SAND (SM), brown										
				1	2 - 20 - 20	m2						
		medium dense				Х	11-10-11 N=21			19-16-3	26	
1		trace gravel		5 —		X	8-15-16	2.4	115			
		medium dense		1		X	9-10-16 N=26					
		10.0 dense		10-		X	12-37-48	2.7	116			
		15.0 POORLY GRADED SAND (SP), trace gravel and silt, light brown, dense	, very	- - 15-			19-28-33					
2		dense 20.0 POORLY GRADED SAND WITH SILT (SP-SM), brown, dense		- - 20-			N=61	1.4				
		21.5 Boring Terminated at 21.5 Feet			<u> </u>		5. PERMISSION (C. 15. 1994)		<u> </u>			
		bonng rerminated at 21.5 reet										
pro See	Suppo	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any). rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth	Water Lev Grou				s ountered			Drill Rig D-50 Hammer Typ Automatic	e	
Not	25		Advancem	nent M	ethor	4				Driller Terracon		
			Hollow Ste							Logged by OW		
			Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite									
	Borng									Boring Comp 12-20-2024	leted	

er	Бc	Location: See Exploration Plan		~	78 52	e	*	(0)		Atterberg Limits	11.00
Lay	nic La	Latitude: 34.4838° Longitude: -118.1424°		(Ft.	/Leve	le Ty	I Tes sults	ater nt (9	Unit it (po		Percent Fines
Model Layer	Graphic Log			Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Fir
2	0	Depth (Ft.)		0	-0			0	5		
		SILTY SAND (SM), brown to light brown									
		very dense				÷			6		
						Å	33-37-50/5"	3.2	125		
				5 -							
				5-		X	30-49-50/4"				
				200		()					
	111	7.5 POORLY GRADED SAND (SP), trace silt, trace gravel, brown, de	ense			-	-		-		
				_		X	24-49-46	1.2	122		
				-						1	
2		light brown		10-		V	11-14-24	1			
				-		\square	N=38				
				-							
				5.0	8						
		15.0		-							
	0	POORLY GRADED SAND WITH GRAVEL (SP), trace silt, light by	rown,	15-	2	Y	24-48-50/4"	2.1	117		
	00	very dense		-	3		21 10 50,1				
	0			-							
				-	5						
				-							
	0			20-	8 3		32-35-35				
	0	21.5 Review Terminated at 21 5 Feet				\square	N=70		<u> </u>		
		Boring Terminated at 21.5 Feet									
proc	edures	ation and Testing Procedures for a description of field and laboratory s used and additional data (If any).	Water Le				untered			Drill Rig D-50	
	See Supporting Information for explanation of symbols and abbreviations. Elevation Reference: Elevations obtained from Google Earth									Hammer Typ Automatic	e
										Driller	
			Advancement Method Hollow Stem Auger							Terracon Logged by	
									ow		
			Abandon Boring bar				Cuttings and/or Be	ntonite		Boring Starte 12-20-2024	
	Borin			Boring backfilled with Auger Cuttings and/or Bentonite Borin 12-20							

Ъ	ŋ	Location: See Exploration Plan		~		æ		(9	Ð	Atterberg Limits			
Model Layer	Graphic Log	Latitude: 34.4835° Longitude: -118.1417° Depth (Ft.)		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines		
	0000	SILTY SAND WITH GRAVEL (SM), brown		1		m					36		
1	0000	medium dense				Х	8-11-11 N=22						
	000000			5 -		X	13-23-25	2.2	115				
	0	7.5 SILTY SAND (SM), trace gravel, brown, very dense				X	18-32-42 N=74			NP	26		
		dense		10-		X	23-28-33	3.3	111				
				-									
	15.0 POORLY GRADED SAND WITH GRAVEL (SP), trace silt, light brown very dense					Х	12-28-39 N=67						
2	000000000	dense		- 20-		Ţ	24-35-48	1.3					
	0				8 6 8	A							
	0000000			- 25-	5 5 8								
	0000			1		Х	43-28-34 N=62						
		30.0		-									
See	Explor	ation and Testing Procedures for a description of field and laboratory	Water Le							Drill Rig			
See	Suppo	s used and additional data (If any). Inting Information for explanation of symbols and abbreviations.	Gro	undwat	er not	enco	ountered			D-50 Hammer Typ	e		
Elevation Reference: Elevations obtained from Google Earth Notes Advan										Automatic Driller			
			Advancement Method Hollow Stem Auger							Terracon Logged by OW			
Aband			Abandon	ment M	letho	d				Boring Starte	bd		
							Cuttings and/or Be	/or Bentonite Boring Completed 12-20-2024					

er	бõ	Location: See Exploration Plan		~	76 22	ed		(%)	6	Atterberg Limits	7580
el Lay	Graphic Log	Latitude: 34.4835° Longitude: -118.1417°		Depth (Ft.)	r Leve vatior	Sample Type	Field Test Results	ater ent (9	ht (p		Percent Fines
Model Layer	Grap.			Dept	Water Level Observations	Samp	Field	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Pel
-		Depth (Ft.) POORLY GRADED SAND WITH GRAVEL (SP), trace silt, light bi	rown	_					-		
	0000	very dense	rown,	-	e .	Х	29-46-50/4"				
	.0			73							
	0.00			-	3						
	0			-							
	20			35-	2 3						
2				2		М	28-33-38 N=71				
				-							
	20			-							
	;(-							
	0	41.3		40-		$\mathbf{\nabla}$	31-48-50/4"				
	101	41.3 Boring Terminated at 41.3 Feet		-	-	\cap					-
See	Explora	ation and Testing Procedures for a description of field and laboratory	Water Le	vel Ob	serva	tions				Drill Rig	_
proc	edures	used and additional data (If any). ting Information for explanation of symbols and abbreviations.					ountered			Drill Rig D-50	
		eference: Elevations obtained from Google Earth								Hammer Type Automatic	e
Note	25		Advancer			1				Driller Terracon	
Hollow Stem Auger				er					Logged by OW		
			Abandon	ment M	letho	d				Boring Starte 12-20-2024	bd
			boring bad	kniled	with A	uger	Cuttings and/or Be	ntonite		Boring Comp 12-20-2024	leted

5	5	Location: See Exploration Plan		12		ø			6	Atterberg Limits	
aye	Lo Lo	Latitude: 34.4838° Longitude: -118.1409°		(Ft.)	evel tions	Typ	Test	er t (%	(pcl	Limits	ent
Model Layer	Graphic Log	Lander 37,7030 Longitude, 110,1403		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
Mo	Gra			Del	Wa	Sar	E.C.	-D	Wei	LL-PL-PI	۳.
	10	Depth (Ft.)									-
	0	SILTY SAND WITH GRAVEL (SM), light brown		20							
	19										
1	0			10		L			-	NP	19
	10	medium dense		-		X	9-23-24	1.1	124		
	0			-		4					
		5.0		5 -							
	0	very dense		5		\times	50/6"	-			
	5			1							
	0			-							
	5			<u></u>		X	36-50/6"	2.4			
	1 of			-					1		
	00			10							
	1ºc			10-	1	V	17-24-36	1			
				1.77		\wedge	N=60				
	12			-							
2				-							
	19										
	101	15.0									
		POORLY GRADED SAND WITH SILT (SP-SM), brown, dense		15-		V					
				-		à	17-22-50/6"	1.3	110		
				2							
				-							
		very dense		20-			40-50/5"	1			
		20.9 Boring Terminated at 20.9 Feet			-	\sim	40-30/3	-	-		-
		ation and Testing Procedures for a description of field and laboratory	Water Le							Drill Rig	
prot	cedures	s used and additional data (If any).	Gro	oundwat	ter not	t eno	ountered			D-50	
		rting Information for explanation of symbols and abbreviations. Reference: Elevations obtained from Google Earth								Hammer Typ Automatic	e
										Driller	
Not	es		Advance Hollow St			đ				Terracon	
										Logged by OW	
			Abandon				C. Winser and Line	a benefit		Boring Starts 12-19-2024	bd
			Boring backfilled with Auger Cuttings and/or Bentonite Boring Completed 12-19-2024								

er	60	Location: See Exploration Plan		~	7 9	90	4	(9)		Atterberg Limits	-175405
Model Layer	Graphic Log	Latitude: 34.4843° Longitude: -118.1400°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		Depth (Ft.) SILTY SAND (SM), trace gravel, light brown									-
		very dense		1		ens M	24-26-47 N=73				
		dense		- 5 - -		X	26-41-42	3.9	123		
		7.5		-	a						
		POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), lig medium dense	ght brown	-		Х	8-11-15 N=26				
				10-		X	6-18-21	0.9			
2	100	dense		- - 15- -		X	11-15-16 N=31				
				- 20- -		X	14-30-42	1.8	106		
	00	very dense		- 25- -		X	30-35-42 N=77				
		30.0		-							
proc	edures	ation and Testing Procedures for a description of field and laboratory sused and additional data (If any). rting Information for explanation of symbols and abbreviations.	Water Lev Gro				ountered			Drill Rig D-50 Hammer Typ	
Elev	ation F	Reference: Elevations obtained from Google Earth								Automatic	-
Not			Advancement Method Hollow Stem Auger							Driller Terracon Logged by	
										AT Boring Starte	d
				Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite Boring Complet 12-23-2024						leted	

1000000000000000000000000000000000000	er	6C	Location: See Exploration Plan		~	2 2	e	4	(9)		Atterberg Limits	-77.67	
Depth (t) 21-31-43 1 Very donce	lel Lay	phic Lo	Latitude: 34.4843° Longitude: -118.1400°		th (Ft.	er Leve	tyle Typ	eld Tes esults	Vater tent (9	ry Unit ght (pc		ercent	
2 PORELY GRADED SAND WITH SILT AND GRAVEL (SP-SM). light brown, wery dense. 21-31-43 Na=74 19-35-42 Na=77 3 40 21-47-50/6* 10 40 21-47-50/6* 10 10 8 500 ring Terminated at 41.5 Feet 10 10 5 500 ring Terminated at 41.5 Feet 10 10 5 500 ring Terminated at 41.5 Feet 10 10 6 10 10 10 7 10 10 10 8 10 10 10 7 10 10 10 8 10 10 10	Mod	Gra	Depth (Et)		Dep	Wat	Sam	Fie	Cont	Weig	LL-PL-PI	A.	
2 13-35-42 40 13-35-42 40 13-35-42 40 13-35-42 40 13-35-42 5 21-47-50/6* 1 1		:	POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), lic	ght brow	n,		X	21-31-43 N=74			-		
2 Image: Set Dependence of a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of testing Procedure additional data (If any). Notes Advancement Method Terracon		00			70		Δ	1922-999-925					
2 Image: Set Dependence of a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of testing Procedure additional data (If any). Notes Advancement Method Terracon		202			-								
2 Image: Set Dependence of a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Value Level Observations of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Drill Rig Description of Testing Procedures for a description of testing Procedure additional data (If any). Notes Advancement Method Terracon		00			35-								
A1.5 Boring Terminated at 41.5 Feet Image: Control of the control of	2	ે					Д	19-35-42 N=77					
A1.5 Boring Terminated at 41.5 Feet Image: Control of the control of													
A1.5 Boring Terminated at 41.5 Feet Image: Control of the control of		00			-								
See Exploration and Testing Procedures for a description of field and laboratory Water Level Observations Drill Rig See Exploration and Testing Procedures for a description of field and laboratory Water Level Observations Drill Rig See Exploration and Testing Procedures for a description of field and laboratory Water Level Observations Drill Rig See Exploration for explanation of symbols and abbreviations. Heat and additional data (If any). Drill Rig See Exploration for explanation of symbols and abbreviations. Heat and additional data (If any). Drill Rig Notes Advancement Method Heldow Stem Auger Drill Rig		20			40-		V	21-47-50/6"					
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by		<u>_</u>		1			Δ		_	_		_	
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth Driller Notes Advancement Method Hollow Stem Auger Driller Logged by													
procedures used and additional data (If any). Groundwater not encountered D-50 See Supporting Information for explanation of symbols and abbreviations. Hammer Type Automatic Elevation Reference: Elevations obtained from Google Earth D-50 Notes Advancement Method Hollow Stem Auger D-50 Logged by													
Elevation Reference: Elevations obtained from Google Earth Notes Advancement Method Hollow Stem Auger holiow Stem Auger holio	proc	edures	used and additional data (If any).								Drill Rig D-50		
Notes Advancement Method Terracon Hollow Stem Auger Logged by	그는 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있는 것 같아. 것은 것 같아. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?										Automatic	e	
AT AT											Terracon		
											AT		
Abandonment Method 12-23-2024 Boring backfilled with Auger Cuttings and/or Bentonite Boring Completed 12-23-2024	Aban Boring												

10	Location: See Exploration Plan			æ		(9	5	Atterberg Limits	
Model Layer	Location: See Exploration Plan Latitude: 34.4850° Longitude: -118.1389°	Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
- 17	Depth (Ft.) SILTY SAND (SM), brown					+	e - 1		
1	medium dense 5.0 dense		-		22-28-25	2.1 2.7	130		41
	7.5	-		\wedge	N=35				
	SILTY SAND WITH GRAVEL (SM), light brown, dense	-		X	7-18-46	1.2	106		
		10-		Х	8-14-18 N=32			NP	12
	15.0 SILTY SAND (SM), trace gravel, brown, very dense				50/6"	1.4	115		
2		-			30/0				
	SILTY SAND WITH GRAVEL (SM), brown, dense			Х	9-17-21 N=38				
	25.0 SILTY SAND (SM), trace gravel, brown, dense	25		X	17-42-37	2.8	111		
	30.0								
procedu See Su	ploration and Testing Procedures for a description of field and laboratory ures used and additional data (If any). pporting Information for explanation of symbols and abbreviations.	Water Level Ob Groundwa			untered			Drill Rig D-50 Hammer Typ	e e
Elevation Notes	on Reference: Elevations obtained from Google Earth	Advancement Method Hollow Stem Auger						Automatic Driller Terracon Logged by OW	
		Abandonment I Boring backfilled			Cuttings and/or B	entonite		Boring Start 12-19-2024 Boring Comp 12-19-2024	

Port 1990 Location: See Exploration Plan Latitude: 34.4850° Longitude: -118.1389° (1,1) (1,1) (1,2) (1,2) Matcher (1,2) Atterherg (1,2) Depth (Ft.) Depth (Ft.) Depth (Ft.) 14-41-18 14-41-18 POORLY GRADED SAND (SP), trace silt and gravel, light brown, very dense 14-41-18 14-41-18 14-41-18 V 12-41-50/5" 15-23-29 15-23-29 15-23-29 15-23-29 V 24-50/5" 15-23-29 15-23-29 15-23-29 15-23-29	Percent
Depth (Ft.) POORLY GRADED SAND (SP), trace silt and gravel, light brown, very dense 14-41-18 35 15-23-29 N=52	Per
Depth (Ft.) POORLY GRADED SAND (SP), trace silt and gravel, light brown, very dense	
dense N=59 15-23-29 N=52 15-23-29 N=52	
2	
2	
2 40 24-50/5"	
2 40 24-50/5"	
45.0 POORLY GRADED SAND WITH GRAVEL (SP), light brown, very dense 45	
POORLY GRADED SAND WITH GRAVEL (SP), light brown, very dense	
50- 29-50/4"	
Boring Terminated at 50.8 Feet	
See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). Groundwater not encountered D-50	
See Supporting Information for explanation of symbols and abbreviations. Hammer T Elevation Reference: Elevations obtained from Google Earth Automatic	•
Notes Advancement Method Terracon	
Hollow Stem Auger Logged by OW	
CII.	
Abandonment Method Boring backfilled with Auger Cuttings and/or Bentonite	d

er	60	Location: See Exploration Plan		~	2 2	e	t.	(%)		Atterberg Limits	-71.67	
I Lay	nic L	Latitude: 34.4854° Longitude: -118.1394°		(Ft.	· Leve	le Ty	Field Test Results	ater int (9	Unit It (p		Percent Fines	
Model Layer	Graphic Log			Depth (Ft.)	Water Level Observations	Sample Type	Field	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Per	
~	0	Depth (Ft.)		-	20			0	>			
	0	SILTY SAND WITH GRAVEL (SM), brown				son						
	R					1 C						
	0	loose		10								
1	00			_		Х	3-5-4 N=9					
	50							1				
	0	medium dense		5 –		V	8-10-13	3.5	119			
	2			1			0 10 15	0.0	115			
	0	7.5 dense		-								
	2	dense		_		Х	7-12-24 N=36				32	
	0					\cap					-	
	2	medium dense		10-		V	12 22 10					
	50			-		à	12-23-18	4.2	113			
	0			-	2							
	3				5							
2	P			-								
	20	dense		15-	8 8		9-19-10					
	00			-	з.	Å	8-18-19 N=37					
	12			-								
	6			-	×							
	00			-								
	0	20.0 POORLY GRADED SAND WITH GRAVEL (SP), trace silt, brown	i, dense	20-	8 0							
)°	21.5	2	-	8	à	14-30-31	1.4	113			
		Boring Terminated at 21.5 Feet										
See	Explor	ation and Testing Procedures for a description of field and laboratory used and additional data (If any).		Water Level Observations Groundwater not encountered						Drill Rig D-50		
See	Suppo	rting Information for explanation of symbols and abbreviations.		Contractor for Chedinered							e	
Elev	ation F	Reference: Elevations obtained from Google Earth										
Not	es			dvancement Method follow Stem Auger								
				and and a second s								
			Abandon				Cuttings and in T	nke nit		Boring Started 12-18-2024		
				ckined	with A	uger	Cuttings and/or Be	nconite		Boring Comp 12-18-2024	leted	

er	6	Location: See Exploration Plan		~	78 92	9	4	(9)		Atterberg Limits	- 10.00
Model Layer	Graphic Log	Latitude: 34.4857° Longitude: -118.1383° Depth (Ft.)		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	LL-PL-PI	Percent Fines
		SILTY CLAYEY SAND (SC-SM), brown				Т			-		
2		very dense 5.0				X	37-50/5"	2.1	124	21-15-6	41
		medium dense		5 –		V	4-4-6				
		7.5 SILTY SAND (SM), brown, medium dense		-			N=10			-	
		SILIT SAND (SM), brown, medium dense				Х	10-24-28	2.6	112		
1				10-		X	11-8-8 N=16				
						4	N=10				
		15.0 SILTY SAND WITH GRAVEL (SM), brown, medium dense		15-		_			_		
	50	SILIT SAND WITH GRAVEL (SM), brown, medium dense		-	a	X	8-19-26	3.1	104		
	00000	20.0		-							
	0.00	POORLY GRADED SAND WITH GRAVEL (SP), trace silt, brown,	, dense	20-		V	8-14-26				
2				-			N=40				
		very dense		25-		Y	7-25-32				
	20										
	0.0										
	00			_							
	0	30.0		30-							
ace expretation and reaching reaction of a description of here and laboratory			Vater Level Observations Groundwater not encountered						Drill Rig D-50		
See Supporting Information for explanation of symbols and abbreviations.										e	
Elevation Reference: Elevations obtained from Google Earth											
Not	es			lvancement Method Ilow Stem Auger						Terracon Logged by OW	
			Abandonn Boring bac				Cuttings and/or Be	ntonite		Boring Starte 12-19-2024	bd
	Boring ba					agel	carrings and or De			Boring Comp 12-19-2024	leted

뉴	5	Location: See Exploration Plan			- 10	æ		()	e G	Atterberg Limits	
Model Layer	Graphic Log	Latitude: 34.4857° Longitude: -118.1383°		Depth (Ft.)	Water Level Observations	Sample Type	Field Test Results	Water Content (%)	Dry Unit Weight (pcf)	ciriics	Percent Fines
lab	aph			pth	serva	mple	Resi	Wai	Dry	LL-PL-PI	Fin
Ň	-	Durable (The)		De	Ng	Sa	LL.	ß	N.	Contribution and	1000
		Depth (Ft.) POORLY GRADED SAND (SP), trace silt, light brown, very dense	2		-		18-31-31				- 1
				-	6	Х	N=62				
				-				1			
		35.0									
2	0	POORLY GRADED SAND WITH GRAVEL (SP) trace silt light bro	own and	35-		\times	24-50/6"	1			
-		white, very dense		1		\cap					
	0			-							
	20			-							
				-							
	2			40-							
		41.5		10		М	34-44-48 N=92				
		41.5 Boring Terminated at 41.5 Feet			_	$\langle \gamma \rangle$	11-52		-		_
Car	Evolor	ation and Testing Procedures for a description of field and laboratory	Water Les	vel Oh	serva	tions		L		Drill Rig	
proc	edures	used and additional data (If any).	Water Level Observations Groundwater not encountered							D-50	
See Supporting Information for explanation of symbols and abbreviations. Elevation Reference: Elevations obtained from Google Earth									Hammer Type Automatic	e	
										Driller	
Not	es		Advancement Method Hollow Stem Auger							Terracon	
										Logged by OW	
			Abandonr				_			Boring Starte 12-19-2024	d
		В	Boring bac	kfilled	with A	uger	Cuttings and/or Be	ntonite		Boring Comp 12-19-2024	leted
										12-19-2024	