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1.  Overview & Introduction  

 RPU uses regression based econometric models to forecast both its total expected GWh system 
load and system MW peak on a monthly basis.  Regression based ratio models are also used in 
conjunction with the system load forecasts to predict expected monthly retail loads (GWh) for our four 
primary customer classes.  These models are calibrated to historical load and/or sales data extending 
back to January 2008.  The following input variables are used in one or more of these econometric 
models: (a) various monthly weather summary statistics, (b) specific calendar effects, (c) unplanned for 
expansion and contraction of industrial loads, (d) a monthly labor employment (Labor_Emp) 
econometric input variable for the Riverside – San Bernardino – Ontario metropolitan service area, (e) 
the cumulative load loss effects associated with retail customer solar PV installations and all of our 
measured Energy Efficiency (EE) programs, and (f) the expected net load gain due to increasing Light-
duty and Medium/Heavy-duty Electric Vehicle (EV) penetration levels and anticipated Building 
Electrification (fuel switching) within the RPU service territory.  These models are used to project RPU 
wholesale gross and peak monthly loads and monthly retail sales 20+ years into the future.   

 Due to a lack of AMI and load research survey data, RPU does not currently produce forecasts of 
coincident or non-coincident peak loads associated with any specific customer class.  Additionally, the 
Power Resources Division does not forecast future electrical rates for any customer class and/or tier rate 
structure.  However, our current wholesale and retail forecasting models do explicitly capture and 
account for the effects of all active RPU EE programs at their current funding and implementation levels, 
along with the impacts of currently installed solar PV distributed generation and EV penetration within 
our service territory.  This document describes our statistical methodology used to account for these EE, 
solar PV and EV effects in detail.  The interested reader should refer to our SB1037/AB2021 reports for 
more detailed information about RPU’s various EE/rebate programs, and our prior SB1 reports for more 
general information about historical solar PV installation trends within the RPU service territory.   



Riverside Public Utilities 

Power Resources Division – Resource Planning Unit 

 

 

2 
 

 RPU does not directly administer any type of long-term, dispatchable Demand Response (DR) 
program within its service territory.  However, RPU continues to support a Power Partners voluntary 
load curtailment program to call upon up to 5 MW of commercial and industrial load shedding capability 
during CAISO grid emergencies or extreme heat-storm events.  Additionally, the UC Riverside Campus 
has now enrolled in the CEC DSGS Program and can respond to CEC instructed DR load reductions during 
similar CAISO Emergency events.  Large Commercial and Industrial customers are billed under time-of-
use rate structures to encourage and incentivize off-peak energy use.  Finally, the Utility has no ESP’s in 
its service territory and does not anticipate either losing any existing load or gaining any new service 
territory over the next ten years.  However, staff do expect to see accelerated load growth over the next 
10 years due to increased housing buildouts, an expected 10,000 student enrollment increase at UC 
Riverside, and a city-sponsored economic expansion program (that began in 2024 and is expected to 
continue for the next 5-7 years). 

 

2.   Forecasting Approach 

2.1.   General modeling methodology  

 The following load-based metrics are modeled and forecasted by the RPU Power Resources 
Division: 

 Hourly system loads (MW), 
 Total monthly system load (GWh), 
 Maximum monthly system peak (MW), 
 Total monthly retail loads for our Residential, Commercial, Industrial and Other customer classes 

(GWh). 

 All primary monthly forecasting equations are statistically developed and calibrated to 16+ years 
of historical monthly load data.  The parameter estimates for each forecasting equation are normally 
updated every 12 months; if necessary, the functional form of each equation can also be updated or 
modified on an annual basis.  Please note that this report only summarizes the methodology and 
statistical results for our monthly forecasting equations.  Section 3 of this report describes our monthly 
system load and system peak equations in detail, while section 4 provides a high-level overview of how 
our class-specific, retail load forecasts are derived from our system load forecasts. 

 

2.2.  Input variables  

 The various weather, calendar, economic and structural input variables used in our monthly 
forecasting equations are defined in Table 2.1.  Note that all weather variables represent functions of 
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the average daily temperature (ADT, °F) expressed as either daily cooling degrees (CD) or extended 
heating degrees (XHD), where these indices are in turn defined as 

 CD  =  max{ADT-65, 0}          [Eq. 2.1] 

XHD  =  max{55-ADT, 0}          [Eq. 2.2] 

Thus, two days with average temperatures of 73.3° and 51.5° would have corresponding CD indices of 
8.3 and 0 and XHD indices of 0 and 3.5, respectively.   

 The “structural” variables shown in Table 2.1 represent calculated cumulative load and peak 
impacts associated with the following events, programs, and mandates: 

 A scaling variable for additional, new industrial load that relocated into the RPU service territory 
in the 2011-2012 time frame, in response to a two year, city-wide economic incentive program.  
(Note that this load later migrated out of our service territory in the 2014-2015 time frame; the 
impact of this load loss is also incorporated into this “EconTOU” structural variable.) 

 A second scaling variable for unexplained load reductions in 2023, which now appear to have 
been transitory in nature. 

 Adjustment variables that account for a change in the historical response to maximum and 
cumulative cooling degrees that began back in 2019.  (Note that these variables adjust the 
SumCD and MaxCD3 weather impact effects in the System Load and Peak forecasting models, as 
indicated in Table 2.1.) 

 Avoided energy use directly attributable to RPU energy efficiency programs and rebates. 
 Avoided energy use directly attributable to customer installed solar PV systems within the RPU 

service territory. 
 Additional expected load directly attributable to the increasing number of electric vehicles in 

RPU’s service territory. 
 Additional future expected load directly attributable to building electrification (fuel switching) in 

RPU’s service territory. 

The calculations associated with each of these load and peak impact variables are described in greater 
detail in subsequent sections.  More specifically, section 2.4 describes the amount and timing of the new 
industrial load that relocated into our service territory in 2011 and 2012, and out of our service territory 
in 2014 and 2015.  Likewise, section 2.5 discusses the amount and timing of the transitory 2023 load 
reductions, along with some possible explanations for why these reductions occurred.  Additionally, 
sections 2.6 through 2.9 describe how we calculate the cumulative avoided load and peak energy usage 
associated with RPU energy efficiency programs and rebates (2.6), load loss due to customer installed 
solar PV systems (2.7), load gain due to vehicle electrification within the RPU service territory (2.8), and 
load gain due to anticipated future building electrification (2.9), respectively.   
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Table 2.1.  Economic, calendar, weather, structural and miscellaneous input variables used in RPU 
monthly system load (SL) and system peak (SP) forecasting equations. 

 
Effect 

 
Variable 

 
Definintion 

Forecasting Eqns. 
SL SP 

Economic Emp_CC Labor Employment Level (100,000 units) X X 
Calendar SumMF # of Mon-Fri (weekdays) in month X  

SumSS # of Saturdays and Sundays in month X  
Weather 
 
 
 

SumCD Sum of monthly CD’s X X 
SumXHD Sum of monthly XHD’s X  
MaxHD1 Maximum 1-day XHD in month  X 
MaxCD3 Maximum concurrent 3-day CD sum in 

month 
  X 

SumCD_2019 SumCD x YTIME (interaction variable) X   
MaxCD3_2019 MaxCD3 x YTIME (interaction variable)  X 

Structural EconTOU Expansion/contraction of New Industrial 
load  

X X 

Econ2023 Transitory load reductions in 2023 X X 
YTIME1 Set to 1 for years > 2018, 0 otherwise – 

used for weather interactions 
 

X 
 

X 
(TOU,EE,PV,EV) 
 

Avoided_Load Cumulative EE+PV-EV-BE load (GWh: 
calculated via engineering estimates) 

X  

Avoided_Peak Cumulative EE+PV-EV-BE peak (MW: 
calculated via engineering estimates) 

 X 

Fourier terms Fs1 Fourier frequency (Sine: 12 month phase) X X 
Fc1 Fourier frequency (Cosine: 12 month phase) X X 
Fs2 Fourier frequency (Sine: 6 month phase) X X 
Fc2 Fourier frequency (Cosine: 6 month phase) X X 
Fs3 Fourier frequency (Sine: 4 month phase) X X 
Fc3 Fourier frequency (Cosine: 4 month phase) X X 
Fs2014a Fourier frequency (on/after 2014 effects) X X 
Fc2014a Fourier frequency (on/after 2014 effects) X X 
Fs2014b Fourier frequency (on/after 2014 effects) X X 
Fc2014b Fourier frequency (on/after 2014 effects) X X 

1 Used implicitly to create SumCD_2019 and MaxCD3_2019 variables. 
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Low order Fourier frequencies are also used in the regression equations to help describe 
structured seasonal load (or peak) variations not already explained by other predictor variables.  These 
Fourier frequencies are formally defined as 

Fs(n)  =  Sine[ n x 2π x [(m-0.5)/12} ],         [Eq. 2.3] 

Fc(n)  =  Cosine[ n x 2π x [(m-0.5)/12} ],        [Eq. 2.4] 

where m represents the numerical month number (i.e., 1 = Jan, 2 = Feb, .., 12 = Dec).  Note also that a 
second set of Fourier frequencies are also used in our system load and peak models to account for 
structural changes to our distribution system that occurred in 2014.  These 2014 distribution system 
upgrades were supposed to reduce our energy losses across all load conditions, but in practice appear to 
have only reduced energy losses under lower load conditions. 

 

2.3.  Historical and forecasted inputs: economic and weather effects  

 The monthly employment (Labor_Emp) statistics have been obtained from the CA Department 
of Finance (http://www.labormarketinfo.edd.ca.gov).  Note that these data correspond to the Riverside-
Ontario-San Bernardino metropolitan service area.  Forecasts of future Labor_Emp levels have been set 
to 4.5% employment growth per year through 2034 to serve as a proxy for the anticipated, accelerated 
load growth staff expect to see due to the impacts discussed at the end of section 1.  Forecasts for 
Labor_Emp levels beyond 2034 are assumed to be equal to our recent 10-year historical average for the 
region (e.g., 2.5% employment growth per year).   

 All SumCD, SumXHD, MaxCD3 and MaxHD weather indices for the Riverside service area have 
been calculated from historical average daily temperature levels recorded at the UC Riverside CIMIS 
weather station (http://wwwcimis.water.ca.gov/cimis).  Forecasted average monthly weather indices 
are based on 25-year historical averages; these forecasted monthly indices are shown in Table 2.2.  
These average monthly values are used as weather inputs for all future time periods on/after January 
2025.   

 It should be noted that towards the end of the last decade, the residual errors associated with 
prior load forecasting models began manifesting an apparent “summer bias” effect, e.g., Riverside’s 
observed summer loads began to routinely exceed their forecasts.  Initially, this pattern was attributed 
to random, unexplained variation.  However, by the end of 2021 staff correctly hypothesized that a 
change in customer response to summer temperature conditions had become evident, but mistakenly 
attributed these effects to the ongoing COVID-19 pandemic.1  Now, having the benefit of observed load 

 
1 The working hypothesis at that time was that radically increased levels of telecommuting were significantly 
impacting (elevating) our summer residential load levels, which in turn more than offset the losses in commercial 
loads and thus resulted in higher overall summer system loads.   
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data nearly through the end of 2024, staff believe that this stronger response to summer temperature 
levels represents a more permanent change in customer behavior that appears to have started before 
the pandemic.2  Thus, in order to model this change in customer energy-use behavior, the beta 
parameter slope estimates associated with the SumCD and MaxCD3 regression variables are now 
allowed to adjust on/after 2019 in the updated System Load and Peak forecasting equations described 
in this report (see sections 3.1 and 3.3, respectively). 

 

Table 2.2.  Expected average values (forecast values) for future monthly weather indices; see Table 2.1 
for weather index definitions. 

Month SumCD SumXHD MaxCD3 MaxHD 
JAN 2.5 72.6 1.8 9.5 
FEB 6.0 60.0 3.5 7.7 

MAR 14.4 29.1 8.3 6.5 
APR 35.7 14.5 18.4 4.4 
MAY 74.2 0.7 28.5 0.5 
JUN 173.6 0.6 38.5 0.2 
JUL 345.8 0.0 55.0 0.0 

AUG 371.8 0.0 57.5 0.0 
SEP 266.3 0.0 54.1 0.0 
OCT 104.1 0.5 35.3 0.2 
NOV 21.0 20.2 14.4 4.1 
DEC 2.0 77.4 2.0 9.4 

 

 

2.4  Temporary Load/Peak Impacts due to 2011-2012 Economic Incentive Program 

 In January 2011, in response to the continuing recession within the Inland Empire, the City of 
Riverside launched an economic incentive program to attract new, large scale industrial business to 
relocate within the city boundaries.  As part of this incentive program, RPU launched a parallel program 
for qualified relocating industries to receive a two-year, discounted time-of-use (TOU) electric rate.  In 
response to this program, approximately 10-12 new industrial businesses relocated within the city’s 
electric service boundaries over an 18-month period.   

 
2 Statistical assessments of historical system load data suggest that this change in energy use behavior may have 
begun occurring as early as 2017.  However, because statistical assessments of historical system peak data do not 
reveal significant deviations occurring until 2019, staff have elected to define 2019 as the starting year for 
modeling this behavior change. 
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 In prior iterations of our load forecasting models, staff attempted to directly calculate the 
approximate GWh energy and MW peak load amounts associated with this economic incentive program.  
However, since these numbers have proved to be very difficult to accurately determine, in the current 
forecasting equations staff have instead used a scaling variable in the forecasting models that will 
automatically calibrate to the observed load (or peak) gains and losses over the 2011-2014 time-period.  
Table 2.3 shows how the “econTOU” indicator variable is defined, and what the resulting parameter 
estimate corresponds to in each equation.  By definition, this relative scaling value is set to 0 for all years 
before 2011 and after 2014. 

 It is worth noting that a modified version of this historic economic incentive program was re-
launched in early 2024.  As part of this new program, RPU has reintroduced a two-year, discounted rate 
structure for businesses that relocate into Riverside.  Additionally, the City has directed RPU to continue 
offering this incentive rate structure for the foreseeable future. 

 

Table 2.3.  Values for econTOU indicator variable used to model RPU’s 2011-2014 discounted TOU  
incentive program.  Incentive program was closed in December 2012; nearly all early load gains 
disappeared by December 2014. 

Year Time Period EconTOU value  
Load  

parameter value 
represents 

incremental 
Monthly GWh 

 
Peak  

parameter value 
represents 

incremental monthly 
MW peak 

2011 January - June 0.33 
2011 July-December 0.67 
2012 All months 1.00 
2013 All months 1.00 
2014 January - June 0.67 
2014 July - December 0.33 

 

 

2.5  Temporary Load/Peak Reductions in 2023  

 As discussed in section 2.2, Riverside’s observed 2023 monthly loads and peaks were 
uncharacteristically low, even after adjusting for the atypically cooler weather patterns experienced that 
year.  Staff do not have a full understanding of why this low system load pattern materialized, but two 
possible explanations include (1) a larger than normal number of commercial entities continued 
downsizing (or went out of business) due to continuing post-COVID-19 impacts, and (2) the atypical 
reduction in residential load was in response to elevated inflationary pressures and the associated job 
market stresses experienced in 2023.  Nonetheless, regardless of the underlying factor(s), an Econ2023 
indicator variable has been introduced to both the system load and peak models to account for these 
transitory load loss effects.  Table 2.4 shows how the “econ2023” indicator variable is defined, and what 
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the resulting parameter estimate corresponds to in each equation.  Note that this relative scaling value 
is set to 0 for all years other than 2023. 

 

 

Table 2.4.  Values for econ2023 indicator variable used to model RPU’s 2023 transitory load reductions.   

Year Time Period EconTOU value A negative Load  
parameter value 

quantifies the reduction 
in Monthly GWh 

A negative Peak  
parameter value 

quantifies the reduction 
in monthly MW peak 

2023 January - June 0.50 
2023 July - September 1.00 
2023 October - December 0.50 

 

 

2.6  Cumulative Energy Efficiency savings since 2005 

 RPU has been tracking and reporting SB-1037 annual projected EE savings since 2006.  These 
reported values include projected net annual energy savings and net coincident peak savings for both 
residential and non-residential customers, for a broad number of CEC program sectors.  Broadly 
speaking, these sector specific net energy and peak savings can be classified into “Baseload”, “Lighting” 
and “HVAC” program components, respectively. 

 In the fall of 2014, staff reviewed all EE saving projections going back to fiscal year 2005/06, to 
calculate the cumulative load and peak savings attributable to efficiency improvements and rebate 
programs.  Since that time, staff have continued to track and accumulate this load and peak savings.  
The steps performed in this analysis are as follows: 

1. First compute the sum totals of the projected net annual energy and coincident peak savings for 
the three program components (Baseload, Lighting, and HVAC) for each fiscal year, for both 
residential and non-residential customers. 

2. Next, calculate the cumulative running totals for each component from July 2005 through the 
most recent EE 1037 filing by performing a linear interpolation on the cumulative fiscal year 
components. 

3. Third, convert these interpolated annual totals into monthly impacts by multiplying these 
annual values by the monthly load and peak scaling/shaping factors shown in Table 2.5.  Note 
that the monthly HVAC factors reflect an engineering estimated, monthly interpolation of EE 
savings associated with heating and AC loads in the Riverside service territory. 

4. Finally, sum these three projected monthly program components together to estimate the 
cumulative projected monthly load and peak reduction estimates, directly attributable to 
measured EE activities. 
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Staff continue to update these projections as new information becomes available.  Also, as 
stated above, these represent interpolated engineering estimates of energy efficiency program impacts.  
Figure 2.2 shows a graph of the cumulative impact of the projected retail load savings due to EE impacts 
over time (along with projected load savings attributable to solar PV installations; see section 2.7).  
Likewise, Figure 2.3 shows a graph of the cumulative impact of the projected retail peak energy savings 
due to EE impacts over time. 

In theory, if such estimates are unbiased and accurate, then when a regression variable 
containing these observations is introduced into an econometric forecasting model, the corresponding 
parameter estimate should be approximately equal to -1.05 (to reflect the anticipated load or peak 
energy reduction over time, after adjusting for 5% distribution system losses).  In practice, this 
parameter estimate may differ from -1.05 in a statistically significant manner, due to inaccuracies in the 
various EE program sector savings projections. 

Finally, with respect to the load and peak models discussed in section 3, the future impacts from 
EE savings are forecasted to incrementally offset approximately 1% annual load and peak growth, 
respectively.  These estimates represent a continuation of the average EE savings trends observed over 
the last decade (prior to the COVID pandemic). 

 

Table 2.5.  Monthly load scaling and peak shaping factors for converting interpolated SB 1037 
cumulative annual net load and coincident peak EE program impacts into cumulative monthly impacts. 

 
Month 

Load Scaling Factors Peak Shaping Factors 
Baseload Lighting HVAC Baseload Lighting HVAC 

Jan  
 
 
 
 

0.0833 for all 
months 

0.0970 0.0788  
 
 
 
 

1.0 for all 
months 

1.164 0.411 
Feb 0.0933 0.0541 1.119 0.283 
Mar 0.0858 0.0367 1.030 0.192 
Apr 0.0784 0.0256 0.940 0.134 
May 0.0746 0.0486 0.896 0.253 
Jun 0.0709 0.1122 0.851 0.586 
Jul 0.0709 0.1802 0.851 0.940 
Aug 0.0746 0.1916 0.896 1.000 
Sep 0.0784 0.1289 0.940 0.673 
Oct 0.0858 0.0513 1.030 0.268 
Nov 0.0933 0.0294 1.119 0.154 
Dec 0.0970 0.0626 1.164 0.327 
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2.7  Cumulative Solar PV installations since 2001 

 RPU has been tracking annual projected load and peak savings due to customer solar PV 
installations for the past three decades.  Historically, RPU had also been encouraging the installation of 
customer owned solar PV through its solar rebate program.  Figure 2.1 shows the calculated total 
installed AC capacity of customer owned solar PV in the RPU service territory since 2003. 

Staff estimate the projected net annual energy savings and net coincident peak savings for the 
RPU distribution system by calculating the cumulative load and peak savings attributable to customer 
installed PV systems within our service territory.  These calculations are performed by converting the 
installed AC capacity data into monthly load and peak energy reduction impacts (by multiplying these 
capacity values by the monthly load and peak scaling/shaping factors shown in Table 2.6).  These scaling 
and shaping factors are based on a typical south-facing roof-top solar PV installation with a 20% annual 
capacity factor and assume that our distribution peaks occur in HE19 from November through March, 
and HE17 in April through October.  These projected monthly components are then summed together to 
estimate the cumulative projected monthly load and peak reduction estimates, directly attributable to 
solar PV distributed generation (DG). 

As before, it should be noted that these represent interpolated engineering estimates of solar 
PV DG impacts.  As previously discussed, Figure 2.2 shows a graph of the cumulative impact of the 
projected retail load savings due to both EE and solar PV-DG impacts over time.  Likewise, Figure 2.3 
shows a graph of the cumulative impact of the projected retail peak energy savings due to EE and PV-DG 
impacts over time.  As before, if such estimates are unbiased and reasonably accurate, then when a 
regression variable containing these observations is introduced into an econometric forecasting model, 
the corresponding parameter estimate should be approximately equal to -1.05 (to reflect the 
anticipated load or peak energy reduction and distribution system losses over time, etc.).  In practice, 
this parameter estimate may once again differ from -1.05 in a statistically significant manner, due to 
inaccuracies in the various solar PV-DG savings calculations. 

Additionally, with respect to the load and peak models discussed in section 3, the future 
installed capacity levels associated with customer solar PV systems are forecasted to grow at 4,200 kW 
of capacity annually.  This estimate coincides with the observed trend over the last five years. 
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Figure 2.1. Total installed AC capacity of customer owned solar PV in the RPU service territory since 2003. 

 

Table 2.6.  Monthly load scaling and peak shaping factors for converting cumulative solar AC capacity 
into monthly net load and peak PV-DG impacts.   

Month Load Scaling Factors Peak Shaping Factors 
Jan 0.172 0 
Feb 0.181 0 
Mar 0.195 0 
Apr 0.211 0.247 
May 0.225 0.285 
Jun 0.232 0.294 
Jul 0.229 0.269 
Aug 0.217 0.219 
Sep 0.203 0.156 
Oct 0.188 0.098 
Nov 0.176 0 
Dec 0.170 0 
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Figure 2.2.  Calculated cumulative projected retail energy savings in the RPU service territory due to both EE program and 
solar PV distributed generation impacts over time. 

 

Figure 2.3.  Calculated cumulative projected coincident peak capacity savings in the RPU service territory due to both EE 
program and solar PV distributed generation impacts over time. 
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2.8 Incremental Electric Vehicle Loads  

 In early 2017 the CEC released their Transportation Electrification Common Assumptions 3.0 
model.  Since that time, this model has been periodically updated.  (RPU staff are currently using version 
3.5-3).  This model can be used by CA utilities to forecast EV growth in the utilities service territory 
through 2030, based on a limited number of objective input assumptions.  This model can also be used 
to forecast several emission reduction metrics, in addition to the expected net load growth associated 
with the forecasted EV penetration level. 

 Riverside has elected to continue using this model in our 2024 load forecasting equations to 
estimate our expected net Light-duty EV load growth.  For baseline load forecasting purposes, we 
assume that Riverside will meet its share of the governors 3,500,000 EV’s by 2030 mandate, based on 
the default 0.61% Riverside estimate that defines our service area PEV population as a percent of the 
state total.  This target has been selected because the forecasted increase in Light-duty EVs for 2020-
2021 (2,177 vehicles) closely matched the registered DMV information for our service territory (2,171 
vehicles).  Note that we also assume 5% distribution losses within our service territory and that 10% of 
our customers EV charging load is self-supplied.   

 Currently, Riverside does not have an independent means to estimate Medium/Heavy-duty EV 
load growth in our service territory.  For this metric, staff instead have relied on published CEC 
projections for the SCE service territory.  More specifically, staff have rescaled the SCE projections 
published in the 2021 CEC IEPR hourly forecast scenario3 using a factor of 0.022214 (which represents 
the ratio of RPU to SCE system loads) to deduce a suitable set of forecasts for RPU.  

Based on these input assumptions, Figure 2.4 shows the projected additional utility electrical 
load from both new Light-duty and Medium/Heavy-duty EVs entering RPU’s service territory between 
2015 through 2042.4  Note that for forecasting purposes, these incremental EV loads (above the 2015 
baseline level) are treated as net load additions that effectively offset some of our future EE and DG.PV 
(solar) load losses.   

 

 

 
3 Data obtained from the CED 2021 Hourly Forecast – SCE – Mid Baseline – AAEE Scenario 2 – AAFS Scenario 4 Excel 
workbook publication (TN241182). 
4 LD-EV forecasts beyond 2030 and MHD-EV forecasts beyond 2035 represent linear extrapolations. 
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Figure 2.4.  Projected 2015-2042 RPU electrical load from both Light-duty and Medium-/Heavy-duty EV penetration within 
our service territory.   

 

 

2.9  Incremental Building Electrification (Fuel-Switching) Loads 

 Like Medium/Heavy-duty EVs, Riverside does not have an independent means to estimate 
future Building Electrification (BE) load growth in our service territory.  For this last load modifier, staff 
once again have relied on published CEC projections for the SCE service territory.  As before, staff have 
rescaled the SCE projections published in the 2021 CEC IEPR hourly forecast scenario using a factor of 
0.022214 to deduce suitable BE forecasts for RPU.  

 Figure 2.5 shows the projected additional utility electrical load from building electrification 
entering RPU’s service territory, again from 2015 through 2042.5  (Loads prior to 2021 are assumed to be 
0.)  Note that the bulk of the impacts of these anticipated load additions occur beyond 2030 and appear 
to be quite similar to the Medium/Heavy-duty EV load forecasts. 

  

 
5 BE forecasts beyond 2035 represent linear extrapolations. 
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Figure 2.5.  Projected 2015-2042 RPU electrical load from new building electrification (fuel-switching) activities our service 
territory. 
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3. System Load and Peak Forecast Models 

3.1  Monthly system total load model 

 The regression component of the monthly total system load forecasting model is a function of 
the primary economic driver (Emp_CC), two calendar effects that quantify the number of weekdays 
(SumMF) and weekend days (SumSS) in the month, two weather effects that quantify the total monthly 
cooling and extended heating degrees (SumCD and SumXHD), an additional adjustment effect that 
allows the SumCD impact to adjust for increased sensitivity to cooling degrees after 2019 
(SumCD_2019), ten low order Fourier frequencies that quantify seasonal impacts both before and after 
our distribution system upgrades (Fs1, Fc1, Fs2, Fc2, Fs3, Fc3, Fs2014a, Fc2014a, Fs2014b, and Fc2014b), 
one unconstrained 2011-2014 Industrial load indicator variable (econTOU), one unconstrained indicator 
variable to account for the abnormally low 2023 loads (econ2023), and one constrained effect that 
captures the combined impacts of (avoided) EE, PV and (incremental) EV, BE loads.  Additionally, the 
heterogeneous residual variance (mean square prediction error) component is defined to be seasonally 
dependent; i.e., larger for the summer months (May through October) than the winter months 
(November through April).  Mathematically, the model is defined as 

yt = β0 + β1[Emp_CCt] + β2[SumMFt] + β3[SumSSt] + β4[SumCDt] + β5[SumCD_2019t] + β6[SumXHDt] +  

 β7[Fs1t] + β8[Fc1t] + β9[Fs2t] + β10[Fc2t] + β11[Fs3t] + β12[Fc3t] + β13[Fs2014at] + β14[Fc2014at] + 

β15[Fs2014bt] + β16[Fc2014bt] + β17[econTOUt] + β18[econ2023t] +  

θ1[EEt+PVt-EVt-BEt] + εjt        [Eq. 3.1] 

where 

 εjt for j=1(summer), 2(winter) ~ N(0, σj
2).       [Eq. 3.2] 

In Eq. 3.1, yt represents the RPU monthly total system load (GWh) for the calendar ordered monthly 
observations and forecasts (t=1 → January 2008) and the seasonally heterogeneous summer and winter 
residual errors are assumed to be Normally distributed and temporally uncorrelated.  Eqs. 3.1 and 3.2 
were initially optimized using restricted maximum likelihood (REML) estimation (SAS MIXED Procedure).  
These REML results yielded summer and winter variance component estimates of 14.2 and 9.2 GWh2, 
suggesting that the variance ratio for the seasonal errors is approximately 1.5 to 1.  Based on these 
results, Eq. 3.1 was refit using weighted least squares (SAS REG Procedure).   

 All input observations that reference historical time periods are assumed to be fixed (i.e., 
measured without error) during the estimation process.  For forecasting purposes, all forecasted 
economic indices and structural effects (Emp_CC, econTOU, econ2023, EE, PV, EV and BE) are treated as 
fixed variables and the forecasted weather indices as random effects.  Under such an assumption, the 
first-order Delta method estimate of the forecasting variance for future predictions becomes 
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Var(ŷt) = σm
2 + Var{ β4[SumCDt] + β5[SumCD_2019t] + β6[SumXHDt] }    [Eq. 3.3] 

where σm
2 represents the model calculated mean square prediction variance and the second variance 

term captures the uncertainty in the average weather forecasts.  Note that monthly estimates of the 
second variance term can be approximated via an analysis of 25 years of historical weather data, once 
the three parameters associated with the two weather effects have been estimated. 

 

3.2   System load model statistics and forecasting results 

Table 3.1 shows the pertinent model fitting and summary statistics for the total system load 
forecasting equation, estimated using weighted least squares.  The equation explains 99.0% of the 
observed variability associated with the monthly 2008-2024 system loads and nearly all input parameter 
estimates are statistically significant below the 0.01 significance level.  Note that the summer and winter 
variance components were restricted to a 1.5:1 variance ratio during the weighted least squares 
analysis; likewise, the avoided load parameter was constrained to be equal to -1.05. 

As shown in Table 3.1, the estimate for the winter seasonal variance component is 9.89 GWh2; 
the corresponding summer component is 1.5 times this amount (14.84 GWh2).  An analysis of the 
variance adjusted model residuals suggests that the model errors are also Normally distributed, devoid 
of outliers and approximately temporally uncorrelated; implying that our modeling assumptions are 
reasonable.  By definition, all of the engineering calculated avoided (and incremental) load effect is 
accounted for in this econometric model via use of the avoided load input variable.   

The remaining regression parameter estimates shown in the middle of Table 3.1 indicate that 
monthly system load increases as either/both weather indices increase (SumCD and SumXHD) and the 
weekdays contribute slightly more to the monthly system load, as opposed to Saturdays and Sundays 
(i.e., the SumMF estimate is > than the SumSS estimate).  The load response to the sum of the cooling 
degrees increased after 2019 (SumCD_2019 > 0); the corresponding percent increase can be calculated 
from the ratio of the two parameter estimates, e.g., 100(0.02460/0.19247) = 12.8%.  Additionally, the 
RPU system load is expected to increase as the Emp_CC level grows over time (i.e., Emp_CC > 0).  
However, the loads will grow more slowly if future EE and/or PV trends increase above their current 
forecasted levels, or more quickly if future EV or BE penetration levels increase above their baseline 
levels. 

Figure 3.1 shows the observed (blue points) versus calibrated (green line) system loads for the 
2008-2024 timeframe.  Figure 3.2 shows the forecasted monthly system loads for 2025 through 2036, 
along with the corresponding 95% forecasting envelope.  This forecasting envelope encompasses model 
uncertainty only, while treating both the weather and projected economic indices as fixed inputs.   
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Table 3.1.  Model summary statistics for the monthly total system load forecasting equation. 

 
     Gross Monthly Demand Model (January 2008 - September 2024): GWh units 

 
Forecasting Model: includes Weather & Economic Covariates, Fourier 

Effects, 
Pseudo TOU & 2023 Load Reductions (unconstrained), 2014 Dist.system Adj, 

2019 Weather Adj, and Avoided Loads (EE+PV-EV-FS). 
 

Final Forecasting Equation: assumes constrained Avoided Demand Savings 
and 1.5:1 Summer|Winter variance ratio. 

 
                    Dependent Variable: GWhload Load (GWh) 
 
            Number of Observations Read                        456 
            Number of Observations Used                        201 
            Number of Observations with Missing Values         255 
 
 
                             Weight: season_wght  
 
                             Analysis of Variance 
  
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                    18         177453     9858.49493     996.37    <.0001 
Error                   182     1800.79032        9.89445                      
Corrected Total         200         179254                                     
 
 
             Root MSE              3.14554    R-Square     0.9900 
             Dependent Mean      183.04833    Adj R-Sq     0.9890 
             Coeff Var             1.71842                        
 
 
                             Parameter Estimates 
  
                                     Parameter     Standard 
Variable      Label            DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept     Intercept         1    -97.16541     10.85223    -8.95   <.0001  
Emp_CC        Labor (100,000)   1      6.43967      0.18332    35.13   <.0001  
SumMF                           1      5.38800      0.35338    15.25   <.0001  
SumSS                           1      4.79856      0.40851    11.75   <.0001  
SumCD                           1      0.19247      0.00651    29.58   <.0001  
SumCD_2019                      1      0.02460      0.00368     6.68   <.0001  
SumXHD                          1      0.02874      0.01161     2.48   0.0142  
Fs1                             1     -3.00779      0.88744    -3.39   0.0009  
Fc1                             1     -3.71724      1.12307    -3.31   0.0011  
Fs2                             1      2.11633      0.74213     2.85   0.0049  
Fc2                             1      2.33368      0.62523     3.73   0.0003  
Fs3                             1     -0.27324      0.38590    -0.71   0.4798  
Fc3                             1      1.90297      0.38067     5.00   <.0001  
Fs1_2014                        1     -3.67728      0.77722    -4.73   <.0001  
Fc1_2014                        1     -4.39653      0.83460    -5.27   <.0001  
Fs2_2014                        1      3.96539      0.75478     5.25   <.0001  
Fc2_2014                        1      2.06357      0.74437     2.77   0.0061  
econTOU                         1      6.42796      0.77930     8.25   <.0001  
econ2023                        1    -14.44990      1.75025    -8.26   <.0001          
avoided_load  EE+PV-EV-FS       1     -1.05000            0      n/a     n/a  
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Figure 3.1. Observed and predicted total system load data (2008-2024), after adjusting for known weather conditions. 
  

 

Figure 3.2. Forecasted monthly system loads for 2025-2036; 95% forecasting envelopes encompass model uncertainty only. 
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Figure 3.3.  Strength of correlation between the observed versus prediction system loads shown in Figure 3.1. 

 

 

Finally, Figure 3.3 above shows the strength of correlation between the observed versus back-cast 
predicted system loads shown in Figure 3.1.  Note that this observed versus calibrated load correlation is 
equal to 0.995. 

It should be noted that these model forecasts assume that our future PV-DG installation rates 
will continue at 4.2 MW of AC capacity per year, that our future calculated EE savings rate will continue 
to be approximately equal to 1% of our total annual system loads, that our EV and BE load additions will 
materialize as discussed in sections 2.8 and 2.9, and that the anticipated accelerated load growth over 
the next 10 years can be well approximated by using a 4.5% annual labor growth rate.  Given these 
assumptions, Table 3.2 shows the forecasted monthly RPU system loads for 2025, along with their 
forecasted standard deviations.  In contrast to Figure 3.2, these standard deviations quantify both model 
and weather uncertainty.  The 2025 forecasts project that our annual system load should be about 2,240 
GWh, assuming that the RPU service area experiences typical weather conditions throughout the year. 
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Table 3.2.  2025 monthly total system load forecasts for RPU; forecast standard deviations include both 
model and weather uncertainty. 

Month Load (GWh) Std.Dev (GWh) 
JAN 166.08 3.43 
FEB 148.20 3.82 

MAR 160.52 4.70 
APR 162.34 5.35 
MAY 178.31 8.96 
JUN 198.87 15.51 
JUL 246.35 14.02 

AUG 252.61 11.34 
SEP 221.71 13.04 
OCT 184.64 11.93 
NOV 157.75 4.72 
DEC 162.98 3.44 

 
Annual TOTAL 

 
2240.37 32.70  

 

 

 

3.3  Monthly system peak model 

 The regression component of the monthly system peak forecasting model is a function of the 
primary economic driver (Emp_CC), three weather effects that quantify the maximum three-day cooling 
requirements (i.e., 3-day heat waves), the monthly cooling degrees and the maximum single day heating 
requirement (MaxCD3, SumCD, and MaxHD, respectively), an additional interaction effect that allows 
the MaxCD3 impact to adjust for increased sensitivity to maximum cooling degrees after 2019  
(MaxCD3_2019), eight lower order Fourier frequencies that quantify seasonal impacts both before and 
after our distribution system upgrades (Fs1, Fc1, Fs2, Fc2, Fs3, Fc3, Fs2014a, and Fc2014a),  one 
unconstrained 2011-2014 Industrial peak indicator variable (econTOU), one unconstrained indicator 
variable to account for the abnormally low 2023 peaks (econ2023), and one constrained effect that 
captures the combined impacts of (avoided) EE, PV-DG and (incremental) EV peaks.  Additionally, the 
heterogeneous residual variance (mean square prediction error) component is defined to be seasonally 
dependent; i.e., larger for the summer months (May through October) than the winter months 
(November through April).  Mathematically, the model is defined as 
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yt = β0 + β1[Emp_CCt] + β2[MaxCD3t] + β3[MaxCD3_2019t] + β4[SumCDt] + β5[MaxHDt] + 

β6[Fs(1)t] + β7[Fc(1)t] + β8[Fs(2)t] + β9[Fc(2)t] + β10[Fs(3)t] + β11[Fc(3)t] + 

+ β12[Fs2014at] + β13[Fc2014at] + β14[econTOUt] + β15[econ2023t] + 

θ1[EEt+PV.DGt-EVt]  + εjt        [Eq. 3.4] 

where 

 εjt for j=1(summer), 2(winter) ~ N(0, σj
2).       [Eq. 3.5] 

In Eq. 3.4, yt represents the RPU monthly system peaks (MW) for the calendar ordered monthly 
observations and forecasts (t=1 → January 2008) and the seasonally heterogeneous summer and winter 
residual errors are assumed to be Normally distributed and temporally uncorrelated.  Eqs. 3.4 and 3.5 
were again initially optimized using REML estimation (SAS MIXED Procedure).  These REML results 
yielded summer and winter variance component estimates of 391.3 and 280.3 MW2, suggesting that the 
variance ratio was again approximately 1.5 to 1.  Based on these results, Eq. 3.4 was refit using weighted 
least squares (SAS REG Procedure), with the θ1 parameter estimate also constrained to be equal to  
-1.05. 

 As in the total system load equation, all input observations that reference historical time periods 
were assumed to be fixed.  Likewise, the forecasted economic indices are treated as fixed variables and 
the forecasted weather indices as random effects.  Under such an assumption, the first-order Delta 
method estimate of the forecasting variance for future predictions becomes 

Var(ŷt) = σm
2 + Var{ β2[MaxCD3t] + β3[MaxCD3_2019t] +  

β4[SumCDt] + β5[MaxHDt] }         [Eq. 3.6] 

where σm
2 represents the model calculated mean square prediction variance and the second variance 

term captures the uncertainty in the average weather forecasts.  As before, the second variance term 
was approximated via the analysis of historical weather data after the parameters associated with the 
weather effects were estimated. 

 

3.4   System peak model statistics and forecasting results 

Table 3.3 shows the pertinent model fitting and summary statistics for the system peak 
forecasting equation.  This equation explains approximately 97.7% of the observed variability associated 
with the monthly 2008-2024 system peaks.  Note that the avoided peak parameter was constrained to 
be equal to -1.05 during the weighted least squares analysis.   
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As shown in Table 3.3, the estimate for the winter variance component is 276.8 MW2.  An 
analysis of the model residuals suggests that the model errors are again Normally distributed, devoid of 
outliers and approximately temporally uncorrelated; implying that our modeling assumptions are 
reasonable.  By definition, all of the engineering calculated avoided (and incremental) peak effect is 
accounted for in this econometric model via use of the avoided peak input variable.   

The remaining regression parameter estimates shown in the middle of Table 3.3 imply that 
monthly system peaks increase as each of the weather indices increase.  Furthermore, the peak 
response to 3-day heatwaves became stronger on/after 2019 (MaxCD3_2019 > 0); the percent increase 
for this response calculates out to 100(0.49424/2.98855) = 16.5%.  RPU system peaks are also expected 
to increase as the Emp_CC index increases (i.e., Emp_CC > 0).  These peak loads will grow more slowly if 
future EE and/or PV trends increase above their current forecasted levels, or more quickly if our EV 
and/or BE penetration levels increase.  Finally, not every individual Fourier frequency parameter 
estimate is statistically significant, although their combined effect significantly improves the forecasting 
accuracy of the model. 

Figure 3.4 shows the observed (blue points) versus calibrated (green line) system peaks for the 
2008-2024 timeframe.  Figure 3.5 shows the forecasted monthly system peaks for 2025 through 2036, 
along with the corresponding 95% forecasting envelope.  This forecasting envelope again encompasses 
just the model uncertainty, while treating the weather variables and projected economic and structural 
indices as fixed inputs.  Finally, Figure 3.6 shows the strength of correlation between the observed 
versus back-cast predicted system peaks shown in Figure 3.4.  Note that this observed versus calibrated 
load correlation exceeds 0.988. 

Table 3.4 shows the forecasted monthly RPU system peaks for 2025, along with their forecasted 
standard deviations.  In contrast to Figure 3.5, these standard deviations quantify both model and 
weather uncertainty.  The 2025 forecasts project that our maximum monthly system peak should be 
about 592 MW and occur in August, assuming that the RPU service area experiences typical weather 
conditions that month.  Note that this represents a 1-in-2 peak forecast, respectively. 
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Table 3.3.  Model summary statistics for the monthly system peak forecasting equation. 

Gross Monthly Peak Model (January 2008 - September 2024): MW units 
 

Forecasting Model: includes Weather & Economic Covariates, 
Fourier Effects, 

Pseudo TOU & 2023 Peak Reductions (unconstrained), 2014 Dist.system Adj, 
2019 Weather Adj, and Avoided Peaks (EE+PV-EV-FS). 

 
Final Forecasting Equation: assumes constrained Avoided Peak Savings 

and 1.5:1 Summer|Winter variance ratio. 
 
                      Dependent Variable: Peak Peak (MW) 
 
            Number of Observations Read                        456 
            Number of Observations Used                        201 
            Number of Observations with Missing Values         255 
 
 
                             Weight: season_wght  
 
                             Analysis of Variance 
  
                                    Sum of           Mean 
Source                   DF        Squares         Square    F Value    Pr > F 
 
Model                    15        2195645         146376     528.81    <.0001 
Error                   185          51209      276.80413                      
Corrected Total         200        2246853                                     
 
 
             Root MSE             16.63743    R-Square     0.9772 
             Dependent Mean      387.43706    Adj R-Sq     0.9754 
             Coeff Var             4.29423                        
 
 
                             Parameter Estimates 
  
                                     Parameter     Standard 
Variable      Label            DF     Estimate        Error  t Value  Pr > |t| 
 
Intercept     Intercept         1    168.35458     19.65831     8.56   <.0001  
Emp_CC        Labor (100,000)   1      8.47812      1.02325     8.29   <.0001  
MxCD3                           1      2.98855      0.19260    15.52   <.0001  
MxCD3_2019                      1      0.49424      0.10762     4.59   <.0001  
SumCD                           1      0.18345      0.04377     4.19   <.0001  
MxHD1                           1      0.42575      0.60509     0.70   0.4826  
Fs1                             1    -15.92847      4.76605    -3.34   0.0010  
Fc1                             1    -23.64181      6.21740    -3.80   0.0002  
Fs2                             1      6.20904      3.43165     1.81   0.0720  
Fc2                             1      3.99940      2.30480     1.74   0.0844  
Fs3                             1      7.69214      2.12888     3.61   0.0004  
Fc3                             1      9.69644      1.89563     5.12   <.0001  
Fs1_2014                        1     -4.29654      4.00299    -1.07   0.2845  
Fc1_2014                        1    -19.50794      4.33276    -4.50   <.0001  
econTOU                         1     15.52169      4.14113     3.75   0.0002  
econ2023                        1    -28.20939      9.20385    -3.06   0.0025  
avoided_peak  EE+PV-EV-FS       1     -1.05000            0      n/a     n/a  
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Figure 3.4. Observed and predicted system peak data (2008-2024), after adjusting for known weather conditions. 

 

Figure 3.5. Forecasted monthly system peaks for 2025-2036; 95% forecasting envelopes encompass model uncertainty only. 
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Figure 3.6.  Strength of correlation between the observed versus prediction system peaks shown in Figure 3.4. 

 

 

Table 3.4.  2025 monthly system peak forecasts for RPU; forecast standard deviations include both 
model and weather uncertainty. 

Month Peak (MW) Std.Dev (MW) 
JAN 285.3 20.7 
FEB 283.1 25.8 

MAR 301.3 29.5 
APR 352.3 42.4 
MAY 422.9 50.4 
JUN 479.4 56.8 
JUL 565.9 37.6 

AUG 591.6 35.9 
SEP 563.6 43.4 
OCT 440.4 49.7 
NOV 329.3 35.4 
DEC 278.9 22.2 
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3.5  Peak demand weather scenario forecasts 

 After calculating the monthly peak forecasts and their corresponding standard deviation 
estimates (that incorporate weather uncertainty), additional peak demand forecasts for more extreme 
weather scenarios can be produced.  Under the assumption that these ŷt forecasts can be 
probabilistically approximated using a Normal distribution, the following formulas can be used to 
calculate 1-in-5, 1-in-10, 1-in-20 and 1-in-40 forecast scenarios: 

 1-in-5 Peak: ŷt + 0.842[ Std(ŷt) ]      [Eq. 3.7] 

 1-in-10 Peak: ŷt + 1.282[ Std(ŷt) ]        [Eq. 3.8] 

 1-in-20 Peak: ŷt + 1.645[ Std(ŷt) ]        [Eq. 3.9] 

 1-in-40 Peak: ŷt + 1.960[ Std(ŷt) ]        [Eq. 3.10] 

In Eqs. 3.7 through 3.10, the multiplier terms applied to the standard deviation represent the upper 80% 
(1-in-5), 90% (1-in-10), 95% (1-in-20) and 97.5% (1-in-40) percentiles of the Standard Normal 
distribution, respectively. 

 In the RPU service area, the maximum weather scenario peaks are always forecasted to occur in 
the month of August.  Thus, for 2025, the forecasted 1-in-5, 1-in-10, 1-in-20 and 1-in-40 peaks are 621.8, 
637.6, 650.7 and 662.0 MW, respectively.   
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3.6  CEC Load and Peak Forecasts for RPU versus RPU Staff Forecasts 

 RPU staff are aware that the CEC produces their own set of system load and peak forecasts for 
the City of Riverside during each annual IEPR reporting process.  Historically, these CEC forecasts have 
been presented on the California Energy Demand Managed Forecast tables for various Demand and 
AAEE scenarios.  Note that the most recent set of tables were published by the CEC in June 2024 (e.g., 
California Energy Demand 2023 Planning Forecast LSE and BAA Tables – corrected). 

 Figure 3.7 compares RPU’s staff annual system load forecasts (produced by the load model 
discussed in section 3.2) to the most recent CEC Demand forecasts from the Planning Forecast Tables 
workbook (CEC Publication TN257110).  As shown in Figure 3.7, the two forecasts align quite well; both 
sets of forecasts show very similar load growth patterns through 2040.   

 

 

Figure 3.7.  A comparison of RPU system load forecasts produced by RPU staff versus the most recent CEC Planning forecasts 
for the City of Riverside (2023 Planning Forecast LSE and BA Tables).   

 

 Likewise, Figure 3.8 compares RPU’s staff annual 1-in-2 system peak forecasts (produced by the 
peak model discussed in section 3.3) to the most recent CEC 1-in-2 Peak forecasts from the 2023 LSE and 
BA Planning Forecast Tables.  It should be noted that the CEC peak forecasts for individual cities in past 
CEDU publications have historically represented coincident peak forecasts, but now appear to instead 
represent non-coincident peak forecasts.  Assuming that this is indeed the case, these RPU versus CEC 
forecasts should be directly comparable. 
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As shown in Figure 3.8, both the growth rate and absolute levels for our peak forecasts differ 
materially from the CEC forecasts through 2040.  The CEC forecasts start out about 10% lower and 
exhibit a more delayed growth rate than the RPU forecasts.  Staff believe that these differences are 
most likely reflect two issues: (1) different assumptions about longer-term customer solar PV load 
growth and EV adoption rates within the RPU service territory, and (2) methodology differences for how 
these peak forecasts are constructed.  The second issue is probably more relevant; CEC forecasting 
models have been consistently underestimating RPU peak loads since 2017 (and the last time that RPU 
experienced an annual peak load < 550 MW was back in 2008). 

 

 

 

Figure 3.8.  A comparison of RPU system 1-in-2 peak forecasts produced by RPU staff versus the most recent CEC Planning 
forecasts for the City of Riverside (2023 Planning Forecast LSE and BA Tables).   
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4.  Class-specific Retail Load Forecasts 

 A simplified methodology for partitioning out our system load forecasts into class specific retail 
load forecasts is described in this section.  This new methodology was adopted in 2020 to simplify the 
generation of these retail forecasts, given that its accuracy is virtually equivalent to our prior, more 
complicated forecasting approach. 

The following two issues have traditionally complicated any attempts to produce a robust and 
statistically rigorous set of retail load forecasts.  First, our retail sales data span overlapping monthly 
billing cycles and are subject to post-billing invoice corrections.  Likewise, customers’ monthly cycles can 
(and do) vary from 27 to 33 days per cycle, depending on when specific meter reading cycles are 
completed.  As such, our retail load models tend to be inherently less precise and thus subject to 
significantly more forecasting uncertainty.   

 Second, when using a direct load forecasting approach, there is not a convenient way to 
simultaneously constrain the annual sum of the class specific, retail forecasts to be equal to 94.6% of the 
forecasted annual wholesale loads.  (RPU internal distribution losses have averaged 5.4% over the last 
15 years.)  Instead, this constraint had been applied after-the-fact by determining a post-hoc, annual 
adjustment factor (fR) computed as 

 fR  =  [ 0.946(W) – O ] / [ R + C + I ]         

where R, C, I and O represented the forecasted annual Residential, Commercial, Industrial and Other 
retail loads, and W represented the forecasted annual wholesale system load.  Historically, this process 
was done to force the (less accurate) retail load forecasts to align with the loss-adjusted system load 
forecasts, after accounting for the fact that staff expect 0% growth in the Other retail load class for the 
foreseeable future. 

 Due to these issues, in 2020 staff changed to a simpler retail forecasting approach based on 
modeling simpler retail load ratio metrics.  These load ratio metrics are then used in conjunction with a 
simplified (yet reasonably accurate) relationship for estimating the total monthly retail load from the 
current and prior month’s wholesale loads to produce class specific retail forecasts.  This simplified 
forecasting approach is described in more detail in the next section. 

 

4.1  Calculating Retail Sales from System Load Forecasts 

 The following simplified methodology is currently employed to partition out the system load 
forecasts into class specific retail load forecasts.  Let  

Est.System[m] = system load forecast for month m 

Res[m] = residential retail load billed during month m 
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Comm[m] = commercial retail load billed during month m 

Indst[m] = industrial retail load billed during month m 

Other[m] = all other retail load billed during month m 

Retail[m] = total retail sales billed during month m = Res[m] + Comm[m] + Indst[m] + Other[m]  
 {i.e., the sum of our four customer classes} 

Res.Ratio[m] = Res[m] / [ Res[m] + Comm[m] + Indst[m] ]    

Comm.Ratio[m] = Comm[m] / [ Comm[m] + Indst[m] ]     

Then the following five step process can be used to produce forecasted estimates of the four customer 
classes which (after adjusting for expected system losses) automatically align with the system load 
forecasts (to within 0.1% of the 94.6% target). 

Steps / Methodology: 

1. Forecast Est.Retail[m] = α(Est.System[m]) + β(Est.System[m-1])   
{weighted two month average, where α+β = 0.946} 
 

2. Forecast Est.Other[m], Est.Res.Ratio[m], and Est.Comm.Ratio[m] using simple seasonal 
regression models 
 

3. Compute Est.Res[m] = Est.Res.Ratio[m] x (Est.Retail[m] – Est.Other[m]) 
 

4. Compute Est.Comm[m] = Est.Comm.Ratio[m] x (Est.Retail[m] – Est.Other[m] – Est.Res[m]) 
 

5. Compute Est.Indst[m] = (1 - Est.Comm.Ratio[m]) x (Est.Retail[m] – Est.Other[m] – Est.Res[m]) 

High-level descriptions of steps 1 and 2 are presented below. 

 

4.2  The System Load / Retail Load Relationship 

 A simple relationship can be established between the current month’s MWh retail sales and the 
current and prior month’s MWh system loads.  Specifically, based on observed load and sales data from 
July 2003 through June 2018, staff have determined that a reasonable forecast for the current month’s 
retail sales can be calculated as  

 Est.Retail[m] = 0.398(Est.System[m]) + 0.548(Est.System[m-1])     [Eq. 4.1] 

A plot of this relationship is shown in Figure 4.1; note that this simple regression relationship explains 
approximately 92% of the observed variation in the observed 2003-2018 monthly retail load data. 
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Figure 4.1.  Observed versus forecasted retail load relationship: July 2003 through June 2018. 

  

 

4.3  Load Forecasts for the Other Customer Class 

 The loads associated with the “Other” customer class currently account for less than 1% of the 
total retail load; note that this class is primary comprised of city accounts, street lighting and 
miscellaneous agricultural customers.   From January 2010 through June 2015, the monthly loads 
associated with this class exhibited a stable, seasonal pattern that was independent of changing 
economic conditions (and is expected to remain so for the foreseeable future).  Additionally, this pattern 
does not exhibit any statistically significant relationship with the observed weather variables, after 
removing two obvious outlier months (May 2011 and March 2014).   

In July 2015, the RPU Finance Division migrated all Agricultural Pumping customers from their 
miscellaneous contracts over to Industrial TOU accounts; i.e., out of the Other class and into the 
Commercial (Comm) and Industrial (Indst) classes.  Although this load migration barely impacted the 
Comm or Indst classes, the apparent load loss in the Other class was significant and must therefore be 
accounted for in the forecasting model.  To account for this migration, a “migration” indicator variable 
defined as 0 for all time periods before July 2015 and 1 for all periods after July 2015 was incorporated 
into the model.  Additionally, in December 2018 the Finance Division migrated additional accounts out 
of the Other class, resulting in further load reductions to this class.  Again, this effect can be modeled 
using a second “migration-2” indicator variable (defined to be 1 on/after January 2019).  Finally, in June 
2022 the Finance Division made further adjustments to the street lighting component of the Other class, 
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which again resulted in further load reductions to this class.  This latter effect can be modeled using a 
third “migration-3” indicator variable (defined to be 1 on/after July 2022). 

Based on the above information, the simplified seasonal load forecasting model for this 
customer class was defined to be a function of six low order Fourier frequencies and three indicator 
variables to account for the three load migration effects.  The corresponding equation (derived using 
ordinary least squares) describes about 95% of the observed load variation associated with the monthly 
data from January 2012 through September 2024; a plot of the forecasted versus observed loads for the 
Other customer class is shown in Figure 4.2 below. 

 

 

 

Figure 4.2.  Predicted versus observed loads: Other customer class, January 2012 through September 2024. 
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4.4   Residential and Commercial Load Ratio Models 

In addition to the guaranteed alignment of all retail load forecasts with the forecasted system 
load, the modeling of load ratios is also advantageous because the models themselves are quite simple.  
A simplified seasonal load ratio forecasting model for the Residential customer class was defined to be a 
function of six low order Fourier frequencies, weighted functions of the current and prior month’s 
cooling degrees (SumCD) and heating degrees (SumXHD), one adjustment variable for modeling 
increased residential loads during to the primary COVID-19 pandemic,6  and one additional shift 
indicator variable defined to be equal to 1 on/after July 2021.  (This latter shift indicator variable adjusts 
for the permanent loss of a few very large Industrial customers during the latter part of the COVID 
pandemic, which in turn has systematically increased both the Residential and Commercial ratios.)  
Likewise, a simplified seasonal load ratio forecasting model for the Commercial customer class was 
defined as a function of six low order Fourier frequencies, the EconTOU variable (which accounts for the 
expansion and contraction of new Industrial load during the 2011-2014 time-period), and the previously 
mentioned, additional shift indicator variable defined to be equal to 1 on/after July 2021.  Both load 
ratio equations were again derived via ordinary least squares using January 2012 through September 
2024 calibration data. 

The Residential ratio model describes about 94% of the observed load variation associated with 
the monthly data from January 2012 through September 2024; a plot of the forecasted versus observed 
loads for the Residential customer class is shown in Figure 4.3.  Likewise, the Commercial ratio model 
describes about 78% of the observed load variation associated with the monthly data from January 2012 
through September 2024; a plot of the forecasted versus observed loads for the Commercial customer 
class is shown in Figure 4.4. 

 Once the models for the Residential load ratios, Commercial load ratios and Other direct loads 
were established, steps 3, 4 and 5 were performed to produce the final set of retail load forecasts.  A 
summary of these final forecasts is presented in section 4.5. 

 

 

 
6 This COVID indicator variable is defined to be equal to 1 from March 2020 through June 2021, and 0 otherwise.  
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Figure 4.3.  Predicted versus observed load ratios: Residential customer class, January 2012 through September 2024. 
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Figure 4.4. Predicted versus observed load ratios: Commercial customer class, January 2012 through September 2024. 
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4.5  Final Retail Forecasts 

The computed monthly 2025-2034 forecasts for all the retail customer classes are shown in 
Figure 4.5, along with the total system and total retail load forecasts.  The final annual, class-specific 
adjusted retail forecasts are reported in Table 4.1, along with the system load and peak forecasts 
(through 2045).  It should be noted that the forecasted residential loads exhibit a much more 
pronounced reaction to summer temperature effects.  This pattern reflects the increased load 
associated with running residential air conditioning units during the June-September summer season in 
the RPU service territory.   

 

 

 

Figure 4.5.  RPU monthly retail load forecasts (January 2025 through December 2034) for the system load, total retail load, 
and the residential, commercial, industrial, and other customer classes. 
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Table 4.1.  Annual system load (MWh), system peak (MW) and retail load (MWh) forecasts: 2025-2045. 

 

 

 

Year
System 
Load

System 
Peak Residential Commercial Industrial Other Total Retail

2025 2,240,370 591.6 738,650 440,340 925,110 12,800 2,116,900
2026 2,295,050 596.0 756,360 451,220 948,190 12,800 2,168,570
2027 2,353,540 600.8 775,260 462,850 972,820 12,800 2,223,730
2028 2,419,810 605.9 796,820 476,170 1,001,100 12,800 2,286,890
2029 2,482,880 611.6 817,100 488,530 1,027,260 12,800 2,345,690
2030 2,553,830 617.6 839,980 502,560 1,056,960 12,800 2,412,300
2031 2,629,330 624.2 864,430 517,550 1,088,720 12,800 2,483,500
2032 2,714,210 631.2 891,940 534,510 1,124,700 12,800 2,563,950
2033 2,793,180 638.7 917,760 550,240 1,157,970 12,800 2,638,770
2034 2,882,470 646.7 946,680 567,980 1,195,560 12,800 2,723,020
2035 2,975,960 655.1 976,890 586,500 1,234,770 12,800 2,810,960
2036 3,029,060 658.7 994,510 597,380 1,257,910 12,800 2,862,600
2037 3,073,780 662.3 1,009,300 606,400 1,276,980 12,800 2,905,480
2038 3,124,960 666.2 1,025,860 616,590 1,298,580 12,800 2,953,830
2039 3,177,220 670.2 1,042,910 627,050 1,320,750 12,800 3,003,510
2040 3,236,530 674.4 1,062,000 638,880 1,345,870 12,800 3,059,550
2041 3,288,620 678.8 1,078,760 649,080 1,367,450 12,800 3,108,090
2042 3,346,690 683.4 1,097,580 660,630 1,391,930 12,800 3,162,940
2043 3,406,570 688.2 1,117,090 672,620 1,417,330 12,800 3,219,840
2044 3,472,450 693.2 1,138,460 685,810 1,445,330 12,800 3,282,400
2045 3,531,430 698.4 1,157,650 697,530 1,470,120 12,800 3,338,100


